SWRMeter/tools/meas.py

816 lines
22 KiB
Python

#
# Author: klaute -Kai Lauterbach - @kailauterbach - me@klaute.de
# Date: 09/2016
# License: GPLv3
#
###############################################################################
import argparse
import threading
import time
import serial
import copy
import binascii
import matplotlib.pyplot as plt
from pylab import arange
import sys
import operator
###############################################################################
parser = argparse.ArgumentParser(description='SWR meter helper tool.')
parser.add_argument("-d", "--device", type=str, help="The control device like /dev/ttyUSB0 or COM3.")
# start_freq
parser.add_argument("-s", "--start_freq", type=int, help="")
# end_freq
parser.add_argument("-e", "--end_freq", type=int, help="")
# intervall
parser.add_argument("-i", "--intervall", type=int, help="")
# step_freq
parser.add_argument("-p", "--step_freq", type=int, help="")
# drive_str
parser.add_argument("-a", "--drive_str", type=int, help="")
# start measurement
parser.add_argument("-m", "--start_meas", default=False, help="", action='store_true')
# output file (CSV)
parser.add_argument("-o", "--output_file", type=str, help="")
# show graphical results
parser.add_argument("-g", "--show_graph", default=False, help="", action='store_true')
# get config
parser.add_argument("-c", "--get_config", default=False, help="", action='store_true')
# enable clk
parser.add_argument("-l", "--enable_clk", type=int, help="")
# disable clk
parser.add_argument("-L", "--disable_clk", type=int, help="")
# enable/disable WaveForm
parser.add_argument("-W", "--enable_wf", type=int, help="")
# WaveForm form (0 sinus, 1 triangular, 2 sawtooth)
parser.add_argument("-w", "--form_wf", type=int, help="")
# WaveForm frequency (not related to PWM frequency)
parser.add_argument("-q", "--freq_wf", type=int, help="")
# WaveForm PWM duty cycle
parser.add_argument("-D", "--dc_wf", type=int, help="")
# save default config
parser.add_argument("-S", "--save_config", default=False, help="", action='store_true')
###############################################################################
MSG_SOD1 = 0x3c
MSG_SOD2 = 0x3e
MSG_EOD1 = 0x0d
MSG_EOD2 = 0x0a
MSG_TYPE_ANSWER_OK = 0x01
MSG_TYPE_ANSWER_NOK = 0x02
MSG_TYPE_MEAS_FREQ_INFO = 0x03
MSG_TYPE_MEAS_END_INFO = 0x04
MSG_TYPE_CONFIG = 0x05
MSG_TYPE_ANSWER_OK_DATA_TO_RECV = 0
MSG_TYPE_ANSWER_NOK_DATA_TO_RECV = 0
MSG_TYPE_MEAS_FREQ_INFO_DATA_TO_RECV = 8
MSG_TYPE_MEAS_END_INFO_DATA_TO_RECV = 0
MSG_TYPE_CONFIG_DATA_TO_RECV = 15
CC_CMD_SET_START_FREQ = 0x01
CC_CMD_SET_END_FREQ = 0x02
CC_CMD_SET_INTERVALL = 0x03
CC_CMD_SET_DRIVE_STRENGTH = 0x04
CC_CMD_SET_FREQ_STEP = 0x05
CC_CMD_START_MEASUREMENT = 0x06
CC_CMD_GET_CONFIG = 0x10
CC_CMD_EN_CLK = 0x20
CC_CMD_DIS_CLK = 0x21
CC_CMD_SAV_DFLT = 0x22
CC_CMD_SET_WF_FREQ = 0x30
CC_CMD_SET_WF = 0x31
CC_CMD_SET_WF_DC = 0x32
CC_CMD_EN_WF = 0x33
###############################################################################
TIMEOUT_CNT_MAX = 150
MAIN_LOOP_DELAY_S = 0.05
THREAD_LOOP_DELAY_S = 0.01
###############################################################################
ser = None
device = "/dev/ttyUSB0"
###############################################################################
CC_STATE_WAIT_SOD1 = 0x01
CC_STATE_WAIT_SOD2 = 0x02
CC_STATE_READ_DATA = 0x03
CC_STATE_WAIT_EOD1 = 0x04
CC_STATE_WAIT_EOD2 = 0x05
CC_STATE_GET_TYPE = 0x06
cc_state = CC_STATE_WAIT_SOD1
cc_state_list = [ CC_STATE_WAIT_SOD1,
CC_STATE_WAIT_SOD2,
CC_STATE_READ_DATA,
CC_STATE_WAIT_EOD1,
CC_STATE_WAIT_EOD2 ]
cc_state_fn = {}
msg_type_list = [ MSG_TYPE_ANSWER_OK,
MSG_TYPE_ANSWER_NOK,
MSG_TYPE_MEAS_FREQ_INFO,
MSG_TYPE_CONFIG,
MSG_TYPE_MEAS_END_INFO, ]
msg_type_data_to_read = { MSG_TYPE_ANSWER_OK : MSG_TYPE_ANSWER_OK_DATA_TO_RECV,
MSG_TYPE_ANSWER_NOK : MSG_TYPE_ANSWER_NOK_DATA_TO_RECV,
MSG_TYPE_MEAS_FREQ_INFO : MSG_TYPE_MEAS_FREQ_INFO_DATA_TO_RECV,
MSG_TYPE_CONFIG : MSG_TYPE_CONFIG_DATA_TO_RECV,
MSG_TYPE_MEAS_END_INFO : MSG_TYPE_MEAS_END_INFO_DATA_TO_RECV, }
msg_type = 0
cc_data_read = 0
cc_data_buffer = []
# yes a separate counter to manage the order of the received messages
cc_message_cnt = 0
cc_received_messages = []
###############################################################################
thread_obj = None
thread_lock = None
thread_started = False
thread_stop = False
###############################################################################
vswr_marker = []
meas_freq = []
meas_vswr = []
meas_imp = []
meas_a0 = []
meas_a1 = []
meas_vswr_f = {}
min_vswr = [ 10, 0 ] # the default VSWR is 10 and the default freq is 0]
###############################################################################
lvswr = None
limp = None
la0 = None
la1 = None
###############################################################################
config_read = False
config_lines = False
###############################################################################
fig1 = None
axarr = None
###############################################################################
start_freq = 0
end_freq = 0
step_freq = 0
###############################################################################
def cc_init():
global cc_state_fn
global cc_state
cc_state = CC_STATE_WAIT_SOD1
cc_state_fn = { CC_STATE_WAIT_SOD1 : cc_state_fn_wait_for_sod1,
CC_STATE_WAIT_SOD2 : cc_state_fn_wait_for_sod2,
CC_STATE_WAIT_EOD1 : cc_state_fn_wait_for_eod1,
CC_STATE_WAIT_EOD2 : cc_state_fn_wait_for_eod2,
CC_STATE_GET_TYPE : cc_state_fn_get_type,
CC_STATE_READ_DATA : cc_state_fn_read_data, }
########## function to call by the thread
def cc_dataReceiverThread():
global ser
global cc_state
global cc_state_fn
global thread_started
global thread_stop
thread_started = True
while thread_stop == False:
# 1. read byte from serial port into incoming
incoming = []
bytesToRead = ser.inWaiting()
if bytesToRead > 0:
incoming = list(ser.read(64))
#print(incoming)
# 2. process the received data
for c in incoming:
#print(c)
# call the cc_state specific function to process the currently received byte
cc_state_fn[cc_state](c)
if cc_state not in cc_state_list:
cc_state = CC_STATE_WAIT_SOD1
time.sleep(THREAD_LOOP_DELAY_S)
thread_started = False
##########
def cc_startReceiverThread():
global thread_obj
global thread_lock
global thread_stop
if thread_started == False:
thread_lock = threading.Lock()
thread_obj = threading.Thread(target=cc_dataReceiverThread)
thread_obj.start()
thread_stop = False
##########
def cc_stopReceiverThread():
global thread_obj
global thread_started
global thread_stop
if thread_started == True:
thread_stop = True
thread_obj.join() # wait for the thread to finish
##### CC_STATE_WAIT_SOD1
def cc_state_fn_wait_for_sod1(c):
global cc_data_read
global msg_type
global cc_data_buffer
global cc_state
cc_data_read = 0
msg_type = 0
cc_data_buffer = []
if c == MSG_SOD1:
cc_state = CC_STATE_WAIT_SOD2
else:
cc_state = CC_STATE_WAIT_SOD1
##### CC_STATE_WAIT_SOD2
def cc_state_fn_wait_for_sod2(c):
global cc_state
if c == MSG_SOD2:
cc_state = CC_STATE_GET_TYPE
else:
cc_state = CC_STATE_WAIT_SOD1
##### CC_STATE_GET_TYPE
def cc_state_fn_get_type(c):
global msg_type
global cc_state
if c in msg_type_list:
msg_type = c
if msg_type_data_to_read[msg_type] > 0:
cc_state = CC_STATE_READ_DATA
else:
cc_state = CC_STATE_WAIT_EOD1
else:
cc_state = CC_STATE_WAIT_SOD1
##### CC_STATE_READ_DATA
def cc_state_fn_read_data(c):
global cc_data_buffer
global cc_data_read
global cc_state
if cc_data_read <= msg_type_data_to_read[msg_type] - 1:
cc_data_buffer.append(c)
cc_data_read = cc_data_read + 1
if cc_data_read == msg_type_data_to_read[msg_type]:
cc_state = CC_STATE_WAIT_EOD1
##### CC_STATE_WAIT_EOD1
def cc_state_fn_wait_for_eod1(c):
global cc_state
if c == MSG_EOD1:
cc_state = CC_STATE_WAIT_EOD2
else:
cc_state = CC_STATE_WAIT_SOD1
##### CC_STATE_WAIT_EOD2
def cc_state_fn_wait_for_eod2(c):
global thread_lock
global cc_message_cnt
global cc_state
if c == MSG_EOD2:
is_message_read = False
thread_lock.acquire()
cc_received_messages.append([ cc_message_cnt,
msg_type,
is_message_read,
copy.deepcopy(cc_data_buffer) ])
thread_lock.release()
cc_message_cnt = cc_message_cnt + 1
cc_state = CC_STATE_WAIT_SOD1
###############################################################################
#####
def openSerialDevice(d):
global ser
try:
if "com" in d.lower():
d = "\\\\.\\"+d
ser = serial.Serial(d)
except:
print("ERROR (1): Can't open the serial device " + d)
exit(1)
# Toggle DTR to reset Arduino
ser.setDTR(False)
time.sleep(1)
# toss any data already received, see
# http://pyserial.sourceforge.net/pyserial_api.html#serial.Serial.flushInput
ser.flushInput()
ser.setDTR(True)
try:
if "com" in d.lower():
ser.close()
ser = serial.Serial(
port=d,\
baudrate=115200,\
parity=serial.PARITY_NONE,\
stopbits=serial.STOPBITS_ONE,\
bytesize=serial.EIGHTBITS,\
rtscts=0,\
timeout=0)
except:
print("ERROR (2): Can't open the serial device " + d)
exit(2)
#####
def closeSerialDevice():
global ser
ser.flush()
ser.read(1000)
ser.close()
#####
def sendSerialData(data):
global ser
ser.write(bytearray([ MSG_SOD1, MSG_SOD2 ]))
ser.write(bytearray(data))
ser.write(bytearray([ MSG_EOD1, MSG_EOD2 ]))
ser.flush()
###############################################################################
def user_friendly_freq(f):
if f >= 1000000:
return str(f / 1000000.0) + " MHz"
elif f >= 1000:
return str(f / 1000.0) + " kHz"
return str(f) + " Hz"
###############################################################################
def gen_progress_bar(n, sf, ef, fs):
steps = 1 + ((end_freq - start_freq) / step_freq)
m = 40.0 / steps
ret = "[ "
for i in range(0, int(m * (steps - n))):
ret += "#"
for i in range(0, int(m * n)):
ret += " "
ret += " ] %0.2f %% " % ( (100.0 * (steps - n)/ steps) )
return ret
###############################################################################
def calc_data():
global vswr_marker
global meas_data
global meas_freq
global meas_vswr
global meas_imp
global meas_a0
global meas_a1
global meas_vswr_f
global min_vswr
i = ((drive_str + 1) * 2.0) / 1000.0
##### calculate the results
#for m in meas_data:
m = meas_data[-1]
meas_freq.append(m[0])
vswr = 0
meas_a0.append(m[1])
meas_a1.append(m[2])
if m[1] > 0 and m[2] > 0:
if m[1] > m[2]:
vswr = (1.0 * m[1] / m[2])
meas_vswr.append(vswr)
elif m[1] < m[2]:
vswr = (1.0 * m[2] / m[1])
meas_vswr.append(vswr)
else:
vswr = 1
meas_vswr.append(1)
else:
vswr = 1
meas_vswr.append(1)
meas_vswr_f[m[0]] = vswr
if vswr < min_vswr[0]:
min_vswr[0] = vswr
min_vswr[1] = m[0] # the frequency
# impedance
r = 50.0 * vswr
meas_imp.append(r)
# generate the lowest 5 vswr marker
i = 0
old = 1000
for r in sorted(meas_vswr_f.items(), key=operator.itemgetter(1)):
vswr_marker.append(meas_freq.index(r[0]))
'''
print("\ntype(r) = " + str(type(r)) + " = " + str(r))
print("type(old) = " + str(type(old)) + " = " + str(old))
type(r) = <class 'tuple'> = (50, 1.1784989858012171)
type(old) = <class 'int'> = 1000
'''
if r[1] > old:
i += 1
old = r[1]
if i == 5:
break
#####
def update_graph():
global vswr_marker
global meas_data
global meas_freq
global meas_vswr
global meas_imp
global meas_a0
global meas_a1
global meas_vswr_f
global axarr
global config_read
global config_lines
global lvswr
global limp
global la0
global la1
if config_read == True and config_lines == False:
x = arange(start_freq, end_freq, step_freq)
lvswr, = axarr[0].plot(x[0], [1], label='VSWR', markevery=[vswr_marker[0]], markersize=4, marker="o", markerfacecolor="r")
limp, = axarr[1].plot(x[0], [50], label='impedance', markevery=[vswr_marker[0]], markersize=4, marker="o", markerfacecolor="r")
la0, = axarr[2].plot(x[0], [512], label='fwd')
la1, = axarr[2].plot(x[0], [512], label='ref')
axarr[0].legend(handles=[lvswr])
axarr[0].set_xlim([start_freq, end_freq])
axarr[0].set_ylim([0, max(meas_vswr)+1])
axarr[1].legend(handles=[limp])
axarr[1].set_xlim([start_freq, end_freq])
axarr[1].set_ylim([20, 150])
axarr[2].legend(handles=[la0, la1])
axarr[2].set_xlim([start_freq, end_freq])
axarr[2].set_ylim([0, 1024])
config_lines = True
elif config_read == True and config_lines == True:
lvswr.set_data(meas_freq, meas_vswr)
limp.set_data(meas_freq, meas_imp)
la0.set_data(meas_freq, meas_a0)
la1.set_data(meas_freq, meas_a1)
#print "Please close the mathplot window to exit..."
plt.draw()
plt.pause(0.00000001)
###############################################################################
if __name__ == "__main__":
meas_data = []
cc_init()
# parse the commandline arguments
args = parser.parse_args()
dataSend = 0
timeout = 0
# 1. open serial device or abort
if args.device != None:
device = args.device
print("SWR meter measurement software v0.1 by Kai Lauterbach (me@klaute.de)\n---\n")
openSerialDevice(device)
# 2. start thread to poll cc_dataReceiverThread()
cc_startReceiverThread()
time.sleep(1.5)
# 3. get and process the commandline arguments/parameter
if args.start_freq != None:
print("Set start frequency to: " + user_friendly_freq(args.start_freq))
sendSerialData([CC_CMD_SET_START_FREQ,
(args.start_freq & 0xff000000) >> 24,
(args.start_freq & 0x00ff0000) >> 16,
(args.start_freq & 0x0000ff00) >> 8,
(args.start_freq & 0x000000ff)])
dataSend = dataSend + 1
if args.end_freq != None:
print("Set the end frequency to: " + user_friendly_freq(args.end_freq))
sendSerialData([CC_CMD_SET_END_FREQ,
(args.end_freq & 0xff000000) >> 24,
(args.end_freq & 0x00ff0000) >> 16,
(args.end_freq & 0x0000ff00) >> 8,
(args.end_freq & 0x000000ff)])
dataSend = dataSend + 1
if args.step_freq != None:
print("Set the frequency step size to: " + user_friendly_freq(args.step_freq))
sendSerialData([CC_CMD_SET_FREQ_STEP,
(args.step_freq & 0xff000000) >> 24,
(args.step_freq & 0x00ff0000) >> 16,
(args.step_freq & 0x0000ff00) >> 8,
(args.step_freq & 0x000000ff)])
dataSend = dataSend + 1
if args.intervall != None:
print("Set the time intervall to %d milliseconds" % (args.intervall))
sendSerialData([CC_CMD_SET_INTERVALL,
(args.intervall & 0x0000ff00) >> 8,
(args.intervall & 0x000000ff)])
dataSend = dataSend + 1
if args.drive_str != None:
print("Set the output drive strength to %d mA" % ((args.drive_str + 1) * 2))
sendSerialData([CC_CMD_SET_DRIVE_STRENGTH,
args.drive_str])
dataSend = dataSend + 1
if args.start_meas == True:
print("\nStarting the measurement process...")
sendSerialData([CC_CMD_START_MEASUREMENT])
dataSend = dataSend + 1
if args.get_config == True and args.start_meas == False:
print("Read configuration values...")
sendSerialData([CC_CMD_GET_CONFIG])
dataSend = dataSend + 1
if args.enable_clk != None:
if args.enable_clk < 0 or args.enable_clk > 2:
args.enable_clk = 0
print("Enabling clock output channel: %d" % (args.enable_clk))
sendSerialData([CC_CMD_EN_CLK, args.enable_clk])
dataSend = dataSend + 1
if args.disable_clk != None and args.enable_clk == None:
if args.disable_clk < 0 or args.disable_clk > 2:
args.disable_clk = 0
print("Disabling clock output channel: %d" % (args.disable_clk))
sendSerialData([CC_CMD_DIS_CLK, args.disable_clk])
dataSend = dataSend + 1
if args.enable_wf != None:
if args.enable_wf < 0 or args.enable_wf > 1:
args.enable_wf = 0
print(("Disabling" if args.enable_wf == 0 else "Enabling") + " wave form output")
sendSerialData([CC_CMD_EN_WF, args.enable_wf])
dataSend = dataSend + 1
if args.form_wf != None:
if args.form_wf < 0 or args.form_wf > 3:
args.form_wf = 0
print("Wave form type is set to %d" % (args.form_wf))
sendSerialData([CC_CMD_SET_WF, args.form_wf])
dataSend = dataSend + 1
if args.freq_wf != None:
if args.freq_wf < 0 or args.freq_wf > 7999:
args.freq_wf = 0
print("Wave frequency set to %d" % (args.freq_wf))
sendSerialData([CC_CMD_SET_WF_FREQ, (args.freq_wf & 0x0000ff00) >> 8,
(args.freq_wf & 0x000000ff)])
dataSend = dataSend + 1
if args.dc_wf != None:
if args.dc_wf < 0 or args.dc_wf > 255:
args.dc_wf = 0
print("PWM duty cycle set to %d" % (args.dc_wf))
sendSerialData([CC_CMD_SET_WF_DC, args.dc_wf])
dataSend = dataSend + 1
if args.save_config == True:
print("Save default configuration values...")
sendSerialData([CC_CMD_SAV_DFLT])
dataSend = dataSend + 1
if args.show_graph == True and args.start_meas == True:
plt.ion()
fig1, axarr = plt.subplots(3, sharex=True)
fig1.suptitle("SWR meter measurement results")
update_graph()
# 4. start main loop
while dataSend > 0 and timeout < TIMEOUT_CNT_MAX:
thread_lock.acquire()
tmp_messages = copy.deepcopy(cc_received_messages)
thread_lock.release()
# 4.1 test for the response(s)
for e in tmp_messages:
if e[2] == False: # test for unread message
# process it and set the data to read
if e[1] == MSG_TYPE_ANSWER_OK:
#print "recv: OK"
pass
elif e[1] == MSG_TYPE_ANSWER_NOK:
print("recv: NOT OK on %d" % (dataSend))
elif e[1] == MSG_TYPE_MEAS_FREQ_INFO:
#print "recv: FREQ INFO"
freq = e[3][0] << 24
freq += e[3][1] << 16
freq += e[3][2] << 8
freq += e[3][3]
a0 = e[3][4] << 8
a0 += e[3][5]
a1 = e[3][6] << 8
a1 += e[3][7]
#print "freq: " + user_friendly_freq(freq)
#print "a0: " + str(a0)
#print "a1: " + str(a1)
sys.stdout.write("\r" + gen_progress_bar(dataSend, start_freq, end_freq, step_freq))
meas_data.append([ freq, a0, a1 ])
if args.show_graph == True:
# for file output no recalculationis required
calc_data()
update_graph()
elif e[1] == MSG_TYPE_CONFIG:
#print "recv: CONFIG"
if args.start_meas == True:
print("\nConfiguration used for measurement:")
else:
print("\nConfiguration:")
start_freq = e[3][0] << 24
start_freq += e[3][1] << 16
start_freq += e[3][2] << 8
start_freq += e[3][3]
end_freq = e[3][4] << 24
end_freq += e[3][5] << 16
end_freq += e[3][6] << 8
end_freq += e[3][7]
step_freq = e[3][8] << 24
step_freq += e[3][9] << 16
step_freq += e[3][10] << 8
step_freq += e[3][11]
intervall = e[3][12] << 8
intervall += e[3][13]
drive_str = e[3][14]
print("start_freq = " + user_friendly_freq(start_freq))
print("end_freq = " + user_friendly_freq(end_freq))
print("step_freq = " + user_friendly_freq(step_freq))
print("intervall = " + str(intervall) + " ms")
print("drive_str = " + str((drive_str + 1) * 2) + " mA")
print("")
if args.start_meas == True and config_read == False:
dataSend = dataSend + 1 + ((end_freq - start_freq) / step_freq)
config_read = True
elif e[1] == MSG_TYPE_MEAS_END_INFO:
#print "recv: END INFO"
sys.stdout.write("\r100.00 % done \n")
print("")
#if (args.output_file != None or args.show_graph == True) and args.start_meas == True:
#calc_data()
##### generate the output CSV file
if args.output_file != None and args.start_meas == True:
FILE = open(args.output_file, "w")
FILE.write("freqency;ratio;impedance;drive;fwd;ref\n")
j = 0
i = ((drive_str + 1) * 2.0) / 1000.0
for m in meas_vswr:
FILE.write("%f;%f;%f;%f;%d;%d\n" % (meas_freq[j], m, meas_imp[j], i, meas_data[j][1], meas_data[j][2]))
j = j + 1
FILE.close()
print("Output file " + args.output_file + " written.")
print("First minimum VSWR %0.6f found at freqency %s" % (min_vswr[0], user_friendly_freq(min_vswr[1])))
##### show the graph
if args.show_graph == True and args.start_meas == True:
# TODO wait for close
update_graph()
print("Please close the window to exit the program.")
plt.show(block=True)
else:
print("err: unknown type 0x%02x" % (e[1]))
break
thread_lock.acquire()
cc_received_messages[e[0]][2] = True
thread_lock.release()
timeout = 0 # reset the timeout
# reduce the number of messages to receive
dataSend = dataSend - 1
# manage the timeout behaviour
time.sleep(MAIN_LOOP_DELAY_S)
timeout = timeout + 1
if timeout >= TIMEOUT_CNT_MAX:
print("Timeout happened")
# 5. stop data processing thread
cc_stopReceiverThread()
# 6. close serial device
closeSerialDevice()
exit(0)