Code formatted

This commit is contained in:
Kai Lauterbach 2024-02-05 19:47:43 +01:00
parent c3b0d8bf26
commit 1a54d4bc59
2 changed files with 251 additions and 200 deletions

View file

@ -1,12 +1,14 @@
void peak_mean(uint16_t *i2s_buffer, uint32_t len, float * max_value, float * min_value, float *pt_mean) {
void peak_mean(uint16_t *i2s_buffer, uint32_t len, float *max_value, float *min_value, float *pt_mean)
{
max_value[0] = i2s_buffer[0];
min_value[0] = i2s_buffer[0];
mean_filter filter(5);
filter.init(i2s_buffer[0]);
float mean = 0;
for (uint32_t i = 1; i < len; i++) {
for (uint32_t i = 1; i < len; i++)
{
float value = filter.filter((float)i2s_buffer[i]);
if (value > max_value[0])
@ -21,31 +23,36 @@ void peak_mean(uint16_t *i2s_buffer, uint32_t len, float * max_value, float * mi
pt_mean[0] = mean;
}
//true if digital/ false if analog
bool digital_analog(uint16_t *i2s_buffer, uint32_t max_v, uint32_t min_v) {
// true if digital/ false if analog
bool digital_analog(uint16_t *i2s_buffer, uint32_t max_v, uint32_t min_v)
{
uint32_t upper_threshold = max_v - 0.05 * (max_v - min_v);
uint32_t lower_threshold = min_v + 0.05 * (max_v - min_v);
uint32_t digital_data = 0;
uint32_t analog_data = 0;
for (uint32_t i = 0; i < BUFF_SIZE; i++) {
if (i2s_buffer[i] > lower_threshold) {
if (i2s_buffer[i] > upper_threshold) {
//HIGH DIGITAL
for (uint32_t i = 0; i < BUFF_SIZE; i++)
{
if (i2s_buffer[i] > lower_threshold)
{
if (i2s_buffer[i] > upper_threshold)
{
// HIGH DIGITAL
digital_data++;
}
else {
//ANALOG/TRANSITION
else
{
// ANALOG/TRANSITION
analog_data++;
}
}
else {
//LOW DIGITAL
else
{
// LOW DIGITAL
digital_data++;
}
}
//more than 50% of data is analog
// more than 50% of data is analog
if (analog_data < digital_data)
return true;
@ -60,7 +67,8 @@ void trigger_freq_analog(uint16_t *i2s_buffer,
float *pt_freq,
float *pt_period,
uint32_t *pt_trigger0,
uint32_t *pt_trigger1) {
uint32_t *pt_trigger1)
{
float freq = 0;
float period = 0;
bool signal_side = false;
@ -69,21 +77,25 @@ void trigger_freq_analog(uint16_t *i2s_buffer,
uint32_t trigger_temp[trigger_num] = {0};
uint32_t trigger_index = 0;
//get initial signal relative to the mean
if (to_voltage(i2s_buffer[0]) > mean) {
// get initial signal relative to the mean
if (to_voltage(i2s_buffer[0]) > mean)
{
signal_side = true;
}
//waveform repetitions calculation + get triggers time
// waveform repetitions calculation + get triggers time
uint32_t wave_center = (max_v + min_v) / 2;
for (uint32_t i = 1 ; i < BUFF_SIZE; i++) {
if (signal_side && i2s_buffer[i] < wave_center - (wave_center - min_v) * 0.2) {
for (uint32_t i = 1; i < BUFF_SIZE; i++)
{
if (signal_side && i2s_buffer[i] < wave_center - (wave_center - min_v) * 0.2)
{
signal_side = false;
}
else if (!signal_side && i2s_buffer[i] > wave_center + (max_v - wave_center) * 0.2) {
else if (!signal_side && i2s_buffer[i] > wave_center + (max_v - wave_center) * 0.2)
{
freq++;
if (trigger_count < trigger_num) {
if (trigger_count < trigger_num)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
@ -91,62 +103,66 @@ void trigger_freq_analog(uint16_t *i2s_buffer,
}
}
//frequency calculation
if (trigger_count < 2) {
// frequency calculation
if (trigger_count < 2)
{
trigger_temp[0] = 0;
trigger_index = 0;
freq = 0;
period = 0;
}
else {
else
{
//simple frequency calculation fair enough for frequencies over 2khz (20hz resolution)
// simple frequency calculation fair enough for frequencies over 2khz (20hz resolution)
freq = freq * 1000 / 50;
period = (float)(sample_rate * 1000.0) / freq; //us
period = (float)(sample_rate * 1000.0) / freq; // us
//from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80) {
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++) {
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
}
//under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80) {
// under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80)
{
period = trigger_temp[1] - trigger_temp[0];
freq = sample_rate * 1000 / period;
}
}
//setting triggers offset and getting second trigger for debug cursor on drawn_channel1
// setting triggers offset and getting second trigger for debug cursor on drawn_channel1
/*
The trigger function uses a rise porcentage (5%) obove the mean, thus,
the real waveform starting point is some datapoints back.
The resulting trigger gets a negative offset of 5% of the calculated period
*/
uint32_t trigger2 = 0;
if (trigger_temp[0] - period * 0.05 > 0 && trigger_count > 1) {
if (trigger_temp[0] - period * 0.05 > 0 && trigger_count > 1)
{
trigger_index = trigger_temp[0] - period * 0.05;
trigger2 = trigger_temp[1] - period * 0.05;
}
else if (trigger_count > 2) {
else if (trigger_count > 2)
{
trigger_index = trigger_temp[1] - period * 0.05;
if (trigger_count > 2)
trigger2 = trigger_temp[2] - period * 0.05;
}
pt_trigger0[0] = trigger_index;
pt_trigger1[0] = trigger2;
pt_freq[0] = freq;
pt_period[0] = period;
}
void trigger_freq_digital(uint16_t *i2s_buffer,
float sample_rate,
float mean,
@ -154,7 +170,8 @@ void trigger_freq_digital(uint16_t *i2s_buffer,
uint32_t min_v,
float *pt_freq,
float *pt_period,
uint32_t *pt_trigger0) {
uint32_t *pt_trigger0)
{
float freq = 0;
float period = 0;
@ -164,32 +181,38 @@ void trigger_freq_digital(uint16_t *i2s_buffer,
uint32_t trigger_temp[trigger_num] = {0};
uint32_t trigger_index = 0;
//get initial signal relative to the mean
if (to_voltage(i2s_buffer[0]) > mean) {
// get initial signal relative to the mean
if (to_voltage(i2s_buffer[0]) > mean)
{
signal_side = true;
}
//waveform repetitions calculation + get triggers time
// waveform repetitions calculation + get triggers time
uint32_t wave_center = (max_v + min_v) / 2;
bool normal_high = (mean > to_voltage(wave_center)) ? true : false;
if (max_v - min_v > 4095 * (0.4 / 3.3)) {
for (uint32_t i = 1 ; i < BUFF_SIZE; i++) {
if (signal_side && i2s_buffer[i] < wave_center - (wave_center - min_v) * 0.2) {
if (max_v - min_v > 4095 * (0.4 / 3.3))
{
for (uint32_t i = 1; i < BUFF_SIZE; i++)
{
if (signal_side && i2s_buffer[i] < wave_center - (wave_center - min_v) * 0.2)
{
//signal was high, fell -> trigger if normal high
if (trigger_count < trigger_num && normal_high) {
// signal was high, fell -> trigger if normal high
if (trigger_count < trigger_num && normal_high)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
signal_side = false;
}
else if (!signal_side && i2s_buffer[i] > wave_center + (max_v - wave_center) * 0.2) {
else if (!signal_side && i2s_buffer[i] > wave_center + (max_v - wave_center) * 0.2)
{
freq++;
//signal was low, rose -> trigger if normal low
if (trigger_count < trigger_num && !normal_high) {
// signal was low, rose -> trigger if normal low
if (trigger_count < trigger_num && !normal_high)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
@ -199,21 +222,25 @@ void trigger_freq_digital(uint16_t *i2s_buffer,
}
freq = freq * 1000 / 50;
period = (float)(sample_rate * 1000.0) / freq; //us
period = (float)(sample_rate * 1000.0) / freq; // us
if (trigger_count > 1) {
//from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80) {
if (trigger_count > 1)
{
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++) {
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
}
//under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80) {
// under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80)
{
period = trigger_temp[1] - trigger_temp[0];
freq = sample_rate * 1000 / period;
}
@ -227,11 +254,7 @@ void trigger_freq_digital(uint16_t *i2s_buffer,
trigger_index = 0;
}
pt_trigger0[0] = trigger_index;
pt_freq[0] = freq;
pt_period[0] = period;
}

View file

@ -34,26 +34,33 @@ void menu_handler() {
button();
}
void button() {
if ( btnok == 1 || btnbk == 1 || btnpl == 1 || btnmn == 1)
void button()
{
if (btnok == 1 || btnbk == 1 || btnpl == 1 || btnmn == 1)
{
menu_action = true;
}
if (menu == true)
{
if (set_value) {
switch (opt) {
if (set_value)
{
switch (opt)
{
case Vdiv:
if (btnpl == 1) {
if (btnpl == 1)
{
volts_index++;
if (volts_index >= sizeof(voltage_division) / sizeof(*voltage_division)) {
if (volts_index >= sizeof(voltage_division) / sizeof(*voltage_division))
{
volts_index = 0;
}
btnpl = 0;
}
else if (btnmn == 1) {
else if (btnmn == 1)
{
volts_index--;
if (volts_index < 0) {
if (volts_index < 0)
{
volts_index = sizeof(voltage_division) / sizeof(*voltage_division) - 1;
}
btnmn = 0;
@ -63,16 +70,20 @@ void button() {
break;
case Sdiv:
if (btnmn == 1) {
if (btnmn == 1)
{
tscale_index++;
if (tscale_index >= sizeof(time_division) / sizeof(*time_division)) {
if (tscale_index >= sizeof(time_division) / sizeof(*time_division))
{
tscale_index = 0;
}
btnmn = 0;
}
else if (btnpl == 1) {
else if (btnpl == 1)
{
tscale_index--;
if (tscale_index < 0) {
if (tscale_index < 0)
{
tscale_index = sizeof(time_division) / sizeof(*time_division) - 1;
}
btnpl = 0;
@ -82,11 +93,13 @@ void button() {
break;
case Offset:
if (btnmn == 1) {
if (btnmn == 1)
{
offset += 0.1 * (v_div * 4) / 3300;
btnmn = 0;
}
else if (btnpl == 1) {
else if (btnpl == 1)
{
offset -= 0.1 * (v_div * 4) / 3300;
btnpl = 0;
}
@ -114,7 +127,6 @@ void button() {
default:
break;
}
if (btnbk == 1)
{
@ -151,8 +163,10 @@ void button() {
hide_menu();
btnbk = 0;
}
if (btnok == 1) {
switch (opt) {
if (btnok == 1)
{
switch (opt)
{
case Autoscale:
auto_scale = !auto_scale;
break;
@ -178,7 +192,7 @@ void button() {
case TOffset:
set_value = true;
//set_value = false;
// set_value = false;
break;
case Single:
@ -211,7 +225,6 @@ void button() {
default:
break;
}
btnok = 0;
@ -238,71 +251,86 @@ void button() {
}
btnbk = 0;
}
if (btnpl == 1) {
if (btnpl == 1)
{
volts_index++;
if (volts_index >= sizeof(voltage_division) / sizeof(*voltage_division)) {
if (volts_index >= sizeof(voltage_division) / sizeof(*voltage_division))
{
volts_index = 0;
}
btnpl = 0;
v_div = voltage_division[volts_index];
}
if (btnmn == 1) {
if (btnmn == 1)
{
tscale_index++;
if (tscale_index >= sizeof(time_division) / sizeof(*time_division)) {
if (tscale_index >= sizeof(time_division) / sizeof(*time_division))
{
tscale_index = 0;
}
btnmn = 0;
s_div = time_division[tscale_index];
}
}
}
void hide_menu() {
void hide_menu()
{
menu = false;
}
void hide_all() {
void hide_all()
{
menu = false;
info = false;
}
void show_menu() {
void show_menu()
{
menu = true;
}
String strings_vdiv() {
String strings_vdiv()
{
return "";
}
String strings_sdiv() {
String strings_sdiv()
{
return "";
}
String strings_offset() {
String strings_offset()
{
return "";
}
String strings_toffset() {
String strings_toffset()
{
return "";
}
String strings_freq() {
String strings_freq()
{
return "";
}
String strings_peak() {
String strings_peak()
{
return "";
}
String strings_vmax() {
String strings_vmax()
{
return "";
}
String strings_vmin() {
String strings_vmin()
{
return "";
}
String strings_filter() {
String strings_filter()
{
return "";
}