Added ChatGPT suggested fixed for frequency calculation.

This commit is contained in:
Kai Lauterbach 2024-02-09 21:43:40 +01:00
parent 7633963ea7
commit a11a75a2c5
1 changed files with 150 additions and 151 deletions

View File

@ -69,98 +69,102 @@ void trigger_freq_analog(uint16_t *i2s_buffer,
uint32_t *pt_trigger0,
uint32_t *pt_trigger1)
{
float freq = 0;
float period = 0;
bool signal_side = false;
uint32_t trigger_count = 0;
uint32_t trigger_num = 10;
uint32_t trigger_temp[trigger_num] = {0};
uint32_t trigger_index = 0;
float freq = 0;
float period = 0;
bool signal_side = false;
uint32_t trigger_count = 0;
uint32_t trigger_num = 10;
uint32_t trigger_temp[trigger_num] = {0};
uint32_t trigger_index = 0;
// get initial signal relative to the mean
if (to_voltage(i2s_buffer[0]) > mean)
{
signal_side = true;
}
// get initial signal relative to the mean
bool previous_signal_side = (to_voltage(i2s_buffer[0]) > mean);
// waveform repetitions calculation + get triggers time
uint32_t wave_center = (max_v + min_v) / 2;
for (uint32_t i = 1; i < BUFF_SIZE; i++)
{
if (signal_side && i2s_buffer[i] < wave_center - (wave_center - min_v) * 0.2)
// waveform repetitions calculation + get triggers time
uint32_t wave_center = (max_v + min_v) / 2;
for (uint32_t i = 1; i < BUFF_SIZE; i++)
{
signal_side = false;
}
else if (!signal_side && i2s_buffer[i] > wave_center + (max_v - wave_center) * 0.2)
{
freq++;
if (trigger_count < trigger_num)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
signal_side = true;
}
}
bool current_signal_side = (to_voltage(i2s_buffer[i]) > mean);
// frequency calculation
if (trigger_count < 2)
{
trigger_temp[0] = 0;
trigger_index = 0;
freq = 0;
period = 0;
}
else
{
if (previous_signal_side && !current_signal_side)
{
freq++;
if (trigger_count < trigger_num)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
} else if (!previous_signal_side && current_signal_side)
{
freq++;
if (trigger_count < trigger_num)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
}
// simple frequency calculation fair enough for frequencies over 2khz (20hz resolution)
freq = freq * 1000 / 50;
period = (float)(sample_rate * 1000.0) / freq; // us
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
previous_signal_side = current_signal_side;
}
// under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80)
// frequency calculation
if (trigger_count < 2)
{
period = trigger_temp[1] - trigger_temp[0];
freq = sample_rate * 1000 / period;
trigger_temp[0] = 0;
trigger_index = 0;
freq = 0;
period = 0;
}
}
else
{
// setting triggers offset and getting second trigger for debug cursor on drawn_channel1
/*
// simple frequency calculation fair enough for frequencies over 2khz (20hz resolution)
freq = freq * 1000 / 50;
period = (float)(sample_rate * 1000.0) / freq; // us
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
}
// under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80)
{
period = trigger_temp[1] - trigger_temp[0];
freq = sample_rate * 1000 / period;
}
}
// setting triggers offset and getting second trigger for debug cursor on drawn_channel1
/*
The trigger function uses a rise porcentage (5%) obove the mean, thus,
the real waveform starting point is some datapoints back.
The resulting trigger gets a negative offset of 5% of the calculated period
*/
uint32_t trigger2 = 0;
if (trigger_temp[0] - period * 0.05 > 0 && trigger_count > 1)
{
trigger_index = trigger_temp[0] - period * 0.05;
trigger2 = trigger_temp[1] - period * 0.05;
}
else if (trigger_count > 2)
{
trigger_index = trigger_temp[1] - period * 0.05;
if (trigger_count > 2)
trigger2 = trigger_temp[2] - period * 0.05;
}
uint32_t trigger2 = 0;
if (trigger_temp[0] - period * 0.05 > 0 && trigger_count > 1)
{
trigger_index = trigger_temp[0] - period * 0.05;
trigger2 = trigger_temp[1] - period * 0.05;
}
else if (trigger_count > 2)
{
trigger_index = trigger_temp[1] - period * 0.05;
if (trigger_count > 2)
trigger2 = trigger_temp[2] - period * 0.05;
}
pt_trigger0[0] = trigger_index;
pt_trigger1[0] = trigger2;
pt_freq[0] = freq;
pt_period[0] = period;
pt_trigger0[0] = trigger_index;
pt_trigger1[0] = trigger2;
pt_freq[0] = freq;
pt_period[0] = period;
}
void trigger_freq_digital(uint16_t *i2s_buffer,
@ -172,89 +176,84 @@ void trigger_freq_digital(uint16_t *i2s_buffer,
float *pt_period,
uint32_t *pt_trigger0)
{
float freq = 0;
float period = 0;
bool signal_side = false;
uint32_t trigger_count = 0;
uint32_t trigger_num = 10;
uint32_t trigger_temp[trigger_num] = {0};
uint32_t trigger_index = 0;
float freq = 0;
float period = 0;
bool signal_side = false;
uint32_t trigger_count = 0;
uint32_t trigger_num = 10;
uint32_t trigger_temp[trigger_num] = {0};
uint32_t trigger_index = 0;
// get initial signal relative to the mean
bool previous_signal_side = (to_voltage(i2s_buffer[0]) > mean);
// get initial signal relative to the mean
if (to_voltage(i2s_buffer[0]) > mean)
{
signal_side = true;
}
// waveform repetitions calculation + get triggers time
uint32_t wave_center = (max_v + min_v) / 2;
bool normal_high = (mean > to_voltage(wave_center)) ? true : false;
if (max_v - min_v > 4095 * (0.4 / 3.3))
{
for (uint32_t i = 1; i < BUFF_SIZE; i++)
// waveform repetitions calculation + get triggers time
uint32_t wave_center = (max_v + min_v) / 2;
bool normal_high = (mean > to_voltage(wave_center)) ? true : false;
if (max_v - min_v > 4095 * (0.4 / 3.3))
{
if (signal_side && i2s_buffer[i] < wave_center - (wave_center - min_v) * 0.2)
{
// signal was high, fell -> trigger if normal high
if (trigger_count < trigger_num && normal_high)
for (uint32_t i = 1; i < BUFF_SIZE; i++)
{
trigger_temp[trigger_count] = i;
trigger_count++;
bool current_signal_side = (to_voltage(i2s_buffer[i]) > mean);
if (previous_signal_side && !current_signal_side)
{
// signal was high, fell -> trigger if normal high
if (trigger_count < trigger_num && normal_high)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
}
else if (!previous_signal_side && current_signal_side)
{
// signal was low, rose -> trigger if normal low
if (trigger_count < trigger_num && !normal_high)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
}
previous_signal_side = current_signal_side;
}
signal_side = false;
}
else if (!signal_side && i2s_buffer[i] > wave_center + (max_v - wave_center) * 0.2)
{
freq++;
// signal was low, rose -> trigger if normal low
if (trigger_count < trigger_num && !normal_high)
// frequency calculation
if (trigger_count > 1)
{
trigger_temp[trigger_count] = i;
trigger_count++;
// simple frequency calculation fair enough for frequencies over 2khz (20hz resolution)
freq = freq * 1000 / 50;
period = (float)(sample_rate * 1000.0) / freq; // us
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
}
// under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80)
{
period = trigger_temp[1] - trigger_temp[0];
freq = sample_rate * 1000 / period;
}
}
signal_side = true;
}
trigger_index = trigger_temp[0];
if (trigger_index > 10)
trigger_index -= 10;
else
trigger_index = 0;
}
freq = freq * 1000 / 50;
period = (float)(sample_rate * 1000.0) / freq; // us
if (trigger_count > 1)
{
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
}
// under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80)
{
period = trigger_temp[1] - trigger_temp[0];
freq = sample_rate * 1000 / period;
}
}
trigger_index = trigger_temp[0];
if (trigger_index > 10)
trigger_index -= 10;
else
trigger_index = 0;
}
pt_trigger0[0] = trigger_index;
pt_freq[0] = freq;
pt_period[0] = period;
pt_trigger0[0] = trigger_index;
pt_freq[0] = freq;
pt_period[0] = period;
}