SWRMeter/firmware/waveformgenerator.ino

169 lines
4.3 KiB
C++

#include "Waveforms.h"
uint8_t wf_wave0 = 0;
uint8_t wf_pos = 0;
uint16_t wf_freq = 0;
uint8_t wf_dutyCycle = 0;
unsigned long wf_sample_us = 0;
unsigned long wf_prevMicros = 0;
bool wf_outputEnabled = true; // Variable to control waveform output state
bool wf_pwm_needs_disabling = true;
void initWaveformGenerator()
{
pinMode(PWM_PIN, OUTPUT);
setWaveform(WAVEFORM_SINUS);
// Call the function to set default frequency, here you might want to specify a default frequency
setWaveformFrequency(WAVEFORM_DEFAULT_FREQ_HZ);
setWaveformDC(0);
analogWrite(PWM_PIN, 0);
}
void setWaveform(uint8_t waveform0)
{
if (waveform0 >= 0 and waveform0 < WAVEFORM_MAXWAVEFORM_NUM)
{
wf_wave0 = waveform0;
} else {
// Set default waveforms
wf_wave0 = WAVEFORM_SINUS;
}
}
void setWaveformFrequency(uint16_t frequency)
{
if (frequency >= 1 and frequency < WF_FREQ_MAX_HZ)
{
wf_freq = frequency;
} else {
wf_freq = WAVEFORM_DEFAULT_FREQ_HZ;
}
wf_sample_us = 1000000UL / ((unsigned long)wf_freq * WAVEFORM_MAX_SAMPLES_NUM);
if (frequency >= 30 && frequency <= 1000000)
{
setupPWMFrequency(PWM_PIN, frequency);
}
}
void setWaveformDC(uint8_t dc)
{
wf_dutyCycle = dc;
}
void enableWaveformOutput()
{
wf_outputEnabled = true;
}
void disableWaveformOutput()
{
wf_outputEnabled = false;
}
bool isWaveformEnabled()
{
return wf_outputEnabled;
}
void pollWaveformGenerator()
{
if (wf_outputEnabled)
{
if (wf_wave0 != WAVEFORM_DUTYCYCLE)
{
/*unsigned long currentMicros = micros(); // Aktuelle Zeit abrufen
if (currentMicros - wf_prevMicros >= wf_sample_us)
{
wf_prevMicros = currentMicros;
uint16_t sample = map(waveformsTable[wf_wave0][wf_pos], 0, 0xfff, 0, DAC_MAX_VOLTAGE);
sample = constrain(sample, 0, DAC_MAX_VOLTAGE);*/
// write the selected waveform on DAC0
dac_setVoltage(MCP4725_I2C_ADDRESS, wf_pos*10); // do not write to EEPROM, 400000Hz DAC frequency
//wf_pos++;
wf_pos += 1;
if (wf_pos >= WAVEFORM_MAX_SAMPLES_NUM) // Reset the counter to repeat the wave
wf_pos = 0;
//}
} else {
// WAVEFORM_DUTYCYCLE
if (analogRead(PWM_PIN) != wf_dutyCycle)
analogWrite(PWM_PIN, wf_dutyCycle);
}
if (!wf_pwm_needs_disabling)
wf_pwm_needs_disabling = true;
} else {
if (wf_pwm_needs_disabling)
{
dac_setVoltage(MCP4725_I2C_ADDRESS, 0);
analogWrite(PWM_PIN, 0);
wf_pwm_needs_disabling = false;
}
}
}
void setupPWMFrequency(uint8_t pin, unsigned long frequency) {
byte prescalerbits = 0b001; // Voreinstellung: kein Prescaler (F_CPU)
unsigned long prescaler_value;
unsigned long ocr;
// Berechne den idealen Prescaler für die gewünschte Frequenz
prescaler_value = F_CPU / frequency;
// Finde den passenden Prescaler
if (prescaler_value < 65536UL) {
prescalerbits = 0b001; // Kein Prescaler (F_CPU)
}
else if ((prescaler_value >>= 3) < 65536UL) {
prescalerbits = 0b010; // Prescaler 8
}
else if ((prescaler_value >>= 3) < 65536UL) {
prescalerbits = 0b011; // Prescaler 64
}
else if ((prescaler_value >>= 2) < 65536UL) {
prescalerbits = 0b100; // Prescaler 256
}
else if ((prescaler_value >>= 2) < 65536UL) {
prescalerbits = 0b101; // Prescaler 1024
}
else {
prescalerbits = 0b101; // Prescaler 1024
frequency = F_CPU / (prescaler_value = 65535UL);
}
// Berechne den Wert für den Output Compare Register (OCR)
ocr = F_CPU / (prescaler_value * frequency) - 1;
// Timer konfigurieren
pinMode(pin, OUTPUT);
if (pin == 5 || pin == 6) {
TCCR0B &= ~0b111; // Prescaler löschen
TCCR0B |= prescalerbits; // Neuen Prescaler setzen
OCR0A = ocr; // Output Compare Register setzen
TCCR0A |= (1 << WGM01); // CTC-Modus aktivieren
}
else if (pin == 9 || pin == 10) {
TCCR1B &= ~0b111; // Prescaler löschen
TCCR1B |= prescalerbits; // Neuen Prescaler setzen
OCR1A = ocr; // Output Compare Register setzen
TCCR1A |= (1 << WGM11); // CTC-Modus aktivieren
}
else if (pin == 3 || pin == 11) {
TCCR2B &= ~0b111; // Prescaler löschen
TCCR2B |= prescalerbits; // Neuen Prescaler setzen
OCR2A = ocr; // Output Compare Register setzen
TCCR2A |= (1 << WGM21); // CTC-Modus aktivieren
}
}