SWRMeter/tools/meas.py

584 lines
15 KiB
Python

###############################################################################
import argparse
import threading
import time
import serial
import copy
import binascii
import matplotlib.pyplot as plt
import math
###############################################################################
parser = argparse.ArgumentParser(description='SWR meter helper tool.')
parser.add_argument("-d", "--device", type=str, help="The control device like /dev/ttyUSB0 or COM3.")
# start_freq
parser.add_argument("-s", "--start_freq", type=int, help="")
# end_freq
parser.add_argument("-e", "--end_freq", type=int, help="")
# intervall
parser.add_argument("-i", "--intervall", type=int, help="")
# step_freq
parser.add_argument("-p", "--step_freq", type=int, help="")
# drive_str
parser.add_argument("-a", "--drive_str", type=int, help="")
# start measurement
parser.add_argument("-m", "--start_meas", default=False, help="", action='store_true')
# output file (CSV)
parser.add_argument("-o", "--output_file", type=str, help="")
# show graphical results
parser.add_argument("-g", "--show_graph", default=False, help="", action='store_true')
# get config
#parser.add_argument("-c", "--get_config", default=False, help="", action='store_true')
###############################################################################
MSG_SOD1 = 0x3c
MSG_SOD2 = 0x3e
MSG_EOD1 = 0x0d
MSG_EOD2 = 0x0a
MSG_TYPE_ANSWER_OK = 0x01
MSG_TYPE_ANSWER_NOK = 0x02
MSG_TYPE_MEAS_FREQ_INFO = 0x03
MSG_TYPE_MEAS_END_INFO = 0x04
MSG_TYPE_CONFIG = 0x05
MSG_TYPE_ANSWER_OK_DATA_TO_RECV = 0
MSG_TYPE_ANSWER_NOK_DATA_TO_RECV = 0
MSG_TYPE_MEAS_FREQ_INFO_DATA_TO_RECV = 8
MSG_TYPE_MEAS_END_INFO_DATA_TO_RECV = 0
MSG_TYPE_CONFIG_DATA_TO_RECV = 15
CC_CMD_SET_START_FREQ = 0x01
CC_CMD_SET_END_FREQ = 0x02
CC_CMD_SET_INTERVALL = 0x03
CC_CMD_SET_DRIVE_STRENGTH = 0x04
CC_CMD_SET_FREQ_STEP = 0x05
CC_CMD_START_MEASUREMENT = 0x06
CC_CMD_GET_CONFIG = 0x10
###############################################################################
TIMEOUT_CNT_MAX = 150
MAIN_LOOP_DELAY_S = 0.05
THREAD_LOOP_DELAY_S = 0.01
###############################################################################
ser = None
device = "/dev/ttyUSB0"
###############################################################################
CC_STATE_WAIT_SOD1 = 0x01
CC_STATE_WAIT_SOD2 = 0x02
CC_STATE_READ_DATA = 0x03
CC_STATE_WAIT_EOD1 = 0x04
CC_STATE_WAIT_EOD2 = 0x05
CC_STATE_GET_TYPE = 0x06
cc_state = CC_STATE_WAIT_SOD1
cc_state_list = [ CC_STATE_WAIT_SOD1,
CC_STATE_WAIT_SOD2,
CC_STATE_READ_DATA,
CC_STATE_WAIT_EOD1,
CC_STATE_WAIT_EOD2 ]
cc_state_fn = {}
msg_type_list = [ MSG_TYPE_ANSWER_OK,
MSG_TYPE_ANSWER_NOK,
MSG_TYPE_MEAS_FREQ_INFO,
MSG_TYPE_CONFIG,
MSG_TYPE_MEAS_END_INFO, ]
msg_type_data_to_read = { MSG_TYPE_ANSWER_OK : MSG_TYPE_ANSWER_OK_DATA_TO_RECV,
MSG_TYPE_ANSWER_NOK : MSG_TYPE_ANSWER_NOK_DATA_TO_RECV,
MSG_TYPE_MEAS_FREQ_INFO : MSG_TYPE_MEAS_FREQ_INFO_DATA_TO_RECV,
MSG_TYPE_CONFIG : MSG_TYPE_CONFIG_DATA_TO_RECV,
MSG_TYPE_MEAS_END_INFO : MSG_TYPE_MEAS_END_INFO_DATA_TO_RECV, }
msg_type = 0
cc_data_read = 0
cc_data_buffer = []
# yes a separate counter to manage the order of the received messages
cc_message_cnt = 0
cc_received_messages = []
###############################################################################
thread_obj = None
thread_lock = None
thread_started = False
thread_stop = False
###############################################################################
def cc_init():
global cc_state_fn
global cc_state
cc_state = CC_STATE_WAIT_SOD1
cc_state_fn = { CC_STATE_WAIT_SOD1 : cc_state_fn_wait_for_sod1,
CC_STATE_WAIT_SOD2 : cc_state_fn_wait_for_sod2,
CC_STATE_WAIT_EOD1 : cc_state_fn_wait_for_eod1,
CC_STATE_WAIT_EOD2 : cc_state_fn_wait_for_eod2,
CC_STATE_GET_TYPE : cc_state_fn_get_type,
CC_STATE_READ_DATA : cc_state_fn_read_data, }
########## function to call by the thread
def cc_dataReceiverThread():
global ser
global cc_state
global cc_state_fn
global thread_started
global thread_stop
thread_started = True
while thread_stop == False:
# 1. read byte from serial port into incoming
incoming = []
bytesToRead = ser.inWaiting()
if bytesToRead > 0:
incoming = list(ser.read(64))
# 2. process the received data
for c in incoming:
c = int(binascii.hexlify(c), 16)
# call the cc_state specific function to process the currently received byte
cc_state_fn[cc_state](c)
if cc_state not in cc_state_list:
cc_state = CC_STATE_WAIT_SOD1
time.sleep(THREAD_LOOP_DELAY_S)
thread_started = False
##########
def cc_startReceiverThread():
global thread_obj
global thread_lock
global thread_stop
if thread_started == False:
thread_lock = threading.Lock()
thread_obj = threading.Thread(target=cc_dataReceiverThread)
thread_obj.start()
thread_stop = False
##########
def cc_stopReceiverThread():
global thread_obj
global thread_started
global thread_stop
if thread_started == True:
thread_stop = True
thread_obj.join() # wait for the thread to finish
##### CC_STATE_WAIT_SOD1
def cc_state_fn_wait_for_sod1(c):
global cc_data_read
global msg_type
global cc_data_buffer
global cc_state
cc_data_read = 0
msg_type = 0
cc_data_buffer = []
if c == MSG_SOD1:
cc_state = CC_STATE_WAIT_SOD2
else:
cc_state = CC_STATE_WAIT_SOD1
##### CC_STATE_WAIT_SOD2
def cc_state_fn_wait_for_sod2(c):
global cc_state
if c == MSG_SOD2:
cc_state = CC_STATE_GET_TYPE
else:
cc_state = CC_STATE_WAIT_SOD1
##### CC_STATE_GET_TYPE
def cc_state_fn_get_type(c):
global msg_type
global cc_state
if c in msg_type_list:
msg_type = c
if msg_type_data_to_read[msg_type] > 0:
cc_state = CC_STATE_READ_DATA
else:
cc_state = CC_STATE_WAIT_EOD1
else:
cc_state = CC_STATE_WAIT_SOD1
##### CC_STATE_READ_DATA
def cc_state_fn_read_data(c):
global cc_data_buffer
global cc_data_read
global cc_state
if cc_data_read <= msg_type_data_to_read[msg_type] - 1:
cc_data_buffer.append(c)
cc_data_read = cc_data_read + 1
if cc_data_read == msg_type_data_to_read[msg_type]:
cc_state = CC_STATE_WAIT_EOD1
##### CC_STATE_WAIT_EOD1
def cc_state_fn_wait_for_eod1(c):
global cc_state
if c == MSG_EOD1:
cc_state = CC_STATE_WAIT_EOD2
else:
cc_state = CC_STATE_WAIT_SOD1
##### CC_STATE_WAIT_EOD2
def cc_state_fn_wait_for_eod2(c):
global thread_lock
global cc_message_cnt
global cc_state
if c == MSG_EOD2:
is_message_read = False
thread_lock.acquire()
cc_received_messages.append([ cc_message_cnt,
msg_type,
is_message_read,
copy.deepcopy(cc_data_buffer) ])
thread_lock.release()
cc_message_cnt = cc_message_cnt + 1
cc_state = CC_STATE_WAIT_SOD1
###############################################################################
#####
def openSerialDevice(d):
global ser
try:
ser = serial.Serial(d)
except:
print "ERROR: Can't open the serial device " + device
exit(1)
# Toggle DTR to reset Arduino
ser.setDTR(False)
time.sleep(1)
# toss any data already received, see
# http://pyserial.sourceforge.net/pyserial_api.html#serial.Serial.flushInput
ser.flushInput()
ser.setDTR(True)
try:
ser = serial.Serial(
port=d,\
baudrate=115200,\
parity=serial.PARITY_NONE,\
stopbits=serial.STOPBITS_ONE,\
bytesize=serial.EIGHTBITS,\
rtscts=0,\
timeout=0)
except:
print "ERROR: Can't open the serial device " + device
exit(2)
#####
def closeSerialDevice():
global ser
ser.flush()
ser.read(1000)
ser.close()
#####
def sendSerialData(data):
global ser
ser.write(bytearray([ MSG_SOD1, MSG_SOD2 ]))
ser.write(bytearray(data))
ser.write(bytearray([ MSG_EOD1, MSG_EOD2 ]))
ser.flush()
###############################################################################
def user_friendly_freq(f):
if f >= 1000000:
return str(f / 1000000.0) + " MHz"
elif f >= 1000:
return str(f / 1000.0) + " kHz"
return str(f) + " Hz"
###############################################################################
if __name__ == "__main__":
start_freq = 0
end_freq = 0
step_freq = 0
config_read = False
meas_data = []
cc_init()
# parse the commandline arguments
args = parser.parse_args()
dataSend = 0
timeout = 0
# 1. open serial device or abort
if args.device != None:
device = args.device
openSerialDevice(device)
# 2. start thread to poll cc_dataReceiverThread()
cc_startReceiverThread()
time.sleep(1.5)
# 3. get and process the commandline arguments/parameter
#if args.get_config == True and args.start_meas == False:
# print "sent: GET_CONFIG"
# sendSerialData([CC_CMD_GET_CONFIG])
# dataSend = dataSend + 1
if args.start_freq != None:
print "sent: SET_START_FREQ"
sendSerialData([CC_CMD_SET_START_FREQ,
(args.start_freq & 0xff000000) >> 24,
(args.start_freq & 0x00ff0000) >> 16,
(args.start_freq & 0x0000ff00) >> 8,
(args.start_freq & 0x000000ff)])
dataSend = dataSend + 1
if args.end_freq != None:
print "sent: SET_END_FREQ"
sendSerialData([CC_CMD_SET_END_FREQ,
(args.end_freq & 0xff000000) >> 24,
(args.end_freq & 0x00ff0000) >> 16,
(args.end_freq & 0x0000ff00) >> 8,
(args.end_freq & 0x000000ff)])
dataSend = dataSend + 1
if args.step_freq != None:
print "sent: SET_FREQ_STEP"
sendSerialData([CC_CMD_SET_FREQ_STEP,
(args.step_freq & 0xff000000) >> 24,
(args.step_freq & 0x00ff0000) >> 16,
(args.step_freq & 0x0000ff00) >> 8,
(args.step_freq & 0x000000ff)])
dataSend = dataSend + 1
if args.intervall != None:
print "sent: SET_INTERVALL"
sendSerialData([CC_CMD_SET_INTERVALL,
(args.intervall & 0x0000ff00) >> 8,
(args.intervall & 0x000000ff)])
dataSend = dataSend + 1
if args.drive_str != None:
print "sent: SET_DRIVE_STRENGTH"
sendSerialData([CC_CMD_SET_DRIVE_STRENGTH,
args.drive_str])
dataSend = dataSend + 1
if args.start_meas == True:
print "sent: START_MEASUREMENT"
sendSerialData([CC_CMD_START_MEASUREMENT])
dataSend = dataSend + 1
# 4. start main loop
while dataSend > 0 and timeout < TIMEOUT_CNT_MAX:
thread_lock.acquire()
tmp_messages = copy.deepcopy(cc_received_messages)
thread_lock.release()
# 4.1 test for the response(s)
for e in tmp_messages:
if e[2] == False: # test for unread message
# process it and set the data to read
if e[1] == MSG_TYPE_ANSWER_OK:
print "recv: OK"
elif e[1] == MSG_TYPE_ANSWER_NOK:
print "recv: NOT OK"
elif e[1] == MSG_TYPE_MEAS_FREQ_INFO:
print "recv: FREQ INFO"
freq = e[3][0] << 24
freq += e[3][1] << 16
freq += e[3][2] << 8
freq += e[3][3]
a0 = e[3][4] << 8
a0 += e[3][5]
a1 = e[3][6] << 8
a1 += e[3][7]
print "freq: " + user_friendly_freq(freq)
print "a0: " + str(a0)
print "a1: " + str(a1)
meas_data.append([ freq, a0, a1 ])
elif e[1] == MSG_TYPE_CONFIG:
print "recv: CONFIG"
start_freq = e[3][0] << 24
start_freq += e[3][1] << 16
start_freq += e[3][2] << 8
start_freq += e[3][3]
end_freq = e[3][4] << 24
end_freq += e[3][5] << 16
end_freq += e[3][6] << 8
end_freq += e[3][7]
step_freq = e[3][8] << 24
step_freq += e[3][9] << 16
step_freq += e[3][10] << 8
step_freq += e[3][11]
intervall = e[3][12] << 8
intervall += e[3][13]
drive_str = e[3][14]
print "start_freq = " + user_friendly_freq(start_freq)
print "end_freq = " + user_friendly_freq(end_freq)
print "step_freq = " + user_friendly_freq(step_freq)
print "intervall = " + str(intervall) + " ms"
print "drive_str = " + str((drive_str + 1) * 2) + " mA"
if args.start_meas == True and config_read == False:
dataSend = dataSend + 1 + ((end_freq - start_freq) / step_freq)
config_read = True
elif e[1] == MSG_TYPE_MEAS_END_INFO:
print "recv: END INFO"
meas_freq = []
meas_ratio = []
meas_r = []
meas_p = []
min_vswr = [ 10, 0 ] # the default VSWR is 10 and the default freq is 0]
i = ((drive_str + 1) * 2.0) / 1000.0
if args.output_file != None or args.show_graph == True:
for m in meas_data:
meas_freq.append(m[0])
vswr = 0
if m[1] > 0 and m[2] > 0:
if m[1] > m[2]:
vswr = (m[1] / m[2])
meas_ratio.append(vswr)
elif m[1] < m[2]:
vswr = (m[2] / m[1])
meas_ratio.append(vswr)
else:
vswr = 1
meas_ratio.append(1)
else:
vswr = 1
meas_ratio.append(1)
if vswr < min_vswr[0]:
min_vswr[0] = vswr
min_vswr[1] = m[0] # the frequency
# R = meas_data[0] * 5V / 1023 * I
r = (m[1] * 5.0 / 1023.0) / i
meas_r.append(r)
# P = meas_data[0] * 5V ^ 2 / r
if r > 0:
meas_p.append(math.pow(i, 2) * r)
else:
meas_p.append(0)
if args.output_file != None:
FILE = open(args.output_file, "w")
FILE.write("freqency;ratio;impedance;watt;drive\n")
j = 0
for m in meas_ratio:
FILE.write("%f;%f;%f;%f;%f\n" % (meas_freq[j], m, meas_r[j], meas_p[j], i))
j = j + 1
FILE.close()
print "Output file " + args.output_file + " written."
if args.show_graph == True:
plt.plot(meas_freq, meas_ratio)
plt.plot(meas_freq, meas_r)
plt.plot(meas_freq, meas_p)
print "Please close the mathplot window to exit..."
plt.show()
print "First minimum VSWR " + str(min_vswr[0]) + " found at freqency " + user_friendly_freq(min_vswr[1])
else:
print "err: unknown type 0x%02x" % (e[1])
break
thread_lock.acquire()
cc_received_messages[e[0]][2] = True
thread_lock.release()
timeout = 0 # reset the timeout
# reduce the number of messages to receive
dataSend = dataSend - 1
# manage the timeout behaviour
time.sleep(MAIN_LOOP_DELAY_S)
timeout = timeout + 1
if timeout >= TIMEOUT_CNT_MAX:
print "Timeout happened"
# 5. stop data processing thread
cc_stopReceiverThread()
# 6. close serial device
closeSerialDevice()
exit(0)