main.c file reverted.
This commit is contained in:
parent
f2837f8bfe
commit
550962d43a
1 changed files with 277 additions and 395 deletions
672
firmware/main.c
672
firmware/main.c
|
@ -1,21 +1,13 @@
|
|||
/**
|
||||
* description: Modified LUFA example to get two virtual serial USB devices.
|
||||
* author: Kai Lauterbach
|
||||
* date: 08/2016
|
||||
* version: v0.1
|
||||
* license: GPLv3
|
||||
*/
|
||||
|
||||
/*
|
||||
LUFA Library
|
||||
Copyright (C) Dean Camera, 2016.
|
||||
Copyright (C) Dean Camera, 2015.
|
||||
|
||||
dean [at] fourwalledcubicle [dot] com
|
||||
www.lufa-lib.org
|
||||
*/
|
||||
|
||||
/*
|
||||
Copyright 2016 Dean Camera (dean [at] fourwalledcubicle [dot] com)
|
||||
Copyright 2015 Dean Camera (dean [at] fourwalledcubicle [dot] com)
|
||||
|
||||
Permission to use, copy, modify, distribute, and sell this
|
||||
software and its documentation for any purpose is hereby granted
|
||||
|
@ -38,467 +30,357 @@
|
|||
|
||||
/** \file
|
||||
*
|
||||
* Main source file for the project - based on the Mouse and VirtualSerial lufa demo.
|
||||
* This file contains the main tasks of the demo and is responsible for the initial
|
||||
* application hardware configuration.
|
||||
* Main source file for the iUSB2SerialMux demo. This file contains the main tasks of the demo and
|
||||
* is responsible for the initial application hardware configuration.
|
||||
*/
|
||||
|
||||
#include "main.h"
|
||||
|
||||
//********************************************************************************//
|
||||
/**************************************************************************************/
|
||||
|
||||
FIFO_t agent_fifo;
|
||||
FIFO_t seq_mod_fifo;
|
||||
FIFO_t seq_val_fifo;
|
||||
uint32_t EEMEM eep_baudrate;
|
||||
|
||||
uint8_t seq_delay = 0;
|
||||
uint32_t baudrate = 115200; // replacement for the UART_BAUDRATE definition
|
||||
|
||||
volatile uint16_t time_measure_cnt = 0;
|
||||
volatile uint16_t keystroke_delay_time_measure_cnt_old = 0;
|
||||
volatile uint16_t seq_delay_time_measure_cnt_old = 0;
|
||||
/**************************************************************************************/
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
/** Buffer to hold the previously generated Keyboard HID report, for comparison purposes inside the HID class driver. */
|
||||
static uint8_t PrevKeyboardHIDReportBuffer[sizeof(USB_KeyboardReport_Data_t)];
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
/** LUFA HID Class driver interface configuration and state information. This structure is
|
||||
* passed to all HID Class driver functions, so that multiple instances of the same class
|
||||
* within a device can be differentiated from one another. This is for the keyboard HID
|
||||
* interface within the device.
|
||||
/** Contains the current baud rate and other settings of the first virtual serial port. While this demo does not use
|
||||
* the physical USART and thus does not use these settings, they must still be retained and returned to the host
|
||||
* upon request or the host will assume the device is non-functional.
|
||||
*
|
||||
* These values are set by the host via a class-specific request, however they are not required to be used accurately.
|
||||
* It is possible to completely ignore these value or use other settings as the host is completely unaware of the physical
|
||||
* serial link characteristics and instead sends and receives data in endpoint streams.
|
||||
*/
|
||||
USB_ClassInfo_HID_Device_t Keyboard_HID_Interface =
|
||||
{
|
||||
.Config =
|
||||
{
|
||||
.InterfaceNumber = INTERFACE_ID_Keyboard,
|
||||
.ReportINEndpoint =
|
||||
{
|
||||
.Address = KEYBOARD_IN_EPADDR,
|
||||
.Size = KEYBOARD_EPSIZE,
|
||||
.Banks = 1,
|
||||
},
|
||||
.PrevReportINBuffer = PrevKeyboardHIDReportBuffer,
|
||||
.PrevReportINBufferSize = sizeof(PrevKeyboardHIDReportBuffer),
|
||||
},
|
||||
};
|
||||
static CDC_LineEncoding_t LineEncoding1 = { .BaudRateBPS = 0,
|
||||
.CharFormat = CDC_LINEENCODING_OneStopBit,
|
||||
.ParityType = CDC_PARITY_None,
|
||||
.DataBits = 8 };
|
||||
|
||||
/** LUFA CDC Class driver interface configuration and state information. This structure is
|
||||
* passed to all CDC Class driver functions, so that multiple instances of the same class
|
||||
* within a device can be differentiated from one another.
|
||||
/** Contains the current baud rate and other settings of the second virtual serial port. While this demo does not use
|
||||
* the physical USART and thus does not use these settings, they must still be retained and returned to the host
|
||||
* upon request or the host will assume the device is non-functional.
|
||||
*
|
||||
* These values are set by the host via a class-specific request, however they are not required to be used accurately.
|
||||
* It is possible to completely ignore these value or use other settings as the host is completely unaware of the physical
|
||||
* serial link characteristics and instead sends and receives data in endpoint streams.
|
||||
*/
|
||||
USB_ClassInfo_CDC_Device_t VirtualSerial_CDC_Interface =
|
||||
{
|
||||
.Config =
|
||||
{
|
||||
.ControlInterfaceNumber = INTERFACE_ID_CDC_CCI,
|
||||
.DataINEndpoint =
|
||||
{
|
||||
.Address = CDC_TX_EPADDR,
|
||||
.Size = CDC_TXRX_EPSIZE,
|
||||
.Banks = 1,
|
||||
},
|
||||
.DataOUTEndpoint =
|
||||
{
|
||||
.Address = CDC_RX_EPADDR,
|
||||
.Size = CDC_TXRX_EPSIZE,
|
||||
.Banks = 1,
|
||||
},
|
||||
.NotificationEndpoint =
|
||||
{
|
||||
.Address = CDC_NOTIFICATION_EPADDR,
|
||||
.Size = CDC_NOTIFICATION_EPSIZE,
|
||||
.Banks = 1,
|
||||
},
|
||||
},
|
||||
};
|
||||
static CDC_LineEncoding_t LineEncoding2 = { .BaudRateBPS = 0,
|
||||
.CharFormat = CDC_LINEENCODING_OneStopBit,
|
||||
.ParityType = CDC_PARITY_None,
|
||||
.DataBits = 8 };
|
||||
|
||||
/** Standard file stream for the CDC interface when set up, so that the virtual
|
||||
* CDC COM port can be used like any regular character stream in the C APIs.
|
||||
*/
|
||||
static FILE USBSerialStream;
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
/** Main program entry point. This routine contains the overall program flow, including initial
|
||||
* setup of all components and the main program loop.
|
||||
/** Main program entry point. This routine configures the hardware required by the application, then
|
||||
* enters a loop to run the application tasks in sequence.
|
||||
*/
|
||||
int main(void)
|
||||
{
|
||||
// USB/LUFA init
|
||||
SetupHardware();
|
||||
|
||||
// init the timer for time measurements
|
||||
timer_init();
|
||||
|
||||
// LED matrix init
|
||||
lm_init();
|
||||
|
||||
// KEY matrix init
|
||||
km_init();
|
||||
|
||||
// read the key configuration table from EEPROM
|
||||
ch_readConfig();
|
||||
|
||||
// init the serial communication command controller
|
||||
// initialize the command interpreter
|
||||
cc_init();
|
||||
|
||||
FIFO_init( agent_fifo);
|
||||
FIFO_init(seq_mod_fifo);
|
||||
FIFO_init(seq_val_fifo);
|
||||
SET_ERR_MASK(ERRMASK_USB_NOTREADY);
|
||||
|
||||
// Create a regular character stream for the interface so that it can be used with the stdio.h functions
|
||||
CDC_Device_CreateStream(&VirtualSerial_CDC_Interface, &USBSerialStream);
|
||||
|
||||
SET_GLOB_USB_STATUS(STATUSMASK_USB_NOTREADY);
|
||||
GlobalInterruptEnable();
|
||||
|
||||
for (;;)
|
||||
{
|
||||
SendVirtualSerialData();
|
||||
|
||||
ProcessVirtualSerialData();
|
||||
|
||||
CDC_Device_USBTask(&VirtualSerial_CDC_Interface);
|
||||
|
||||
HID_Device_USBTask(&Keyboard_HID_Interface);
|
||||
CDC1_Task();
|
||||
CDC2_Task();
|
||||
|
||||
USB_USBTask();
|
||||
|
||||
static uint8_t delay = 0;
|
||||
if (delay > 50)
|
||||
{
|
||||
delay = 0;
|
||||
lm_show();
|
||||
}
|
||||
delay++;
|
||||
|
||||
//uart_putc('1');
|
||||
}
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
void timer_init()
|
||||
{
|
||||
// configure TIMER0 to count using a specified frequency the TCNT0 variable to generate
|
||||
// a overflow interrupt
|
||||
TCCR0A = 0x02; // WGM1 = 1; WGM0 = 0 => CTC-mode
|
||||
TCCR0B = 0x03; // prescaler = 64; WGM2 = 0 => 16MHz * 256 / 64 = ~ 1mz per Overflow Interrupt
|
||||
TIMSK0 = 0x01; // Overflow Interrupt Enable
|
||||
|
||||
sei();
|
||||
}
|
||||
|
||||
ISR(TCC0_OVF_vect)
|
||||
{
|
||||
if (time_measure_cnt >= 65534)
|
||||
{
|
||||
// reset all the counter values to prevent unpredictable behaviour
|
||||
time_measure_cnt = 0;
|
||||
seq_delay_time_measure_cnt_old = 0;
|
||||
keystroke_delay_time_measure_cnt_old = 0;
|
||||
}
|
||||
time_measure_cnt++;
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
/** Configures the board hardware and chip peripherals for the demo's functionality.
|
||||
*/
|
||||
void SetupHardware()
|
||||
/** Configures the board hardware and chip peripherals for the demo's functionality. */
|
||||
void SetupHardware(void)
|
||||
{
|
||||
#if (ARCH == ARCH_AVR8)
|
||||
// Disable watchdog if enabled by bootloader/fuses
|
||||
/* Disable watchdog if enabled by bootloader/fuses */
|
||||
MCUSR &= ~(1 << WDRF);
|
||||
wdt_disable();
|
||||
|
||||
// Disable clock division */
|
||||
/* Disable clock division */
|
||||
clock_prescale_set(clock_div_1);
|
||||
|
||||
#elif (ARCH == ARCH_XMEGA)
|
||||
// Start the PLL to multiply the 2MHz RC oscillator to 32MHz and switch the CPU
|
||||
// core to run from it
|
||||
/* Start the PLL to multiply the 2MHz RC oscillator to 32MHz and switch the CPU core to run from it */
|
||||
XMEGACLK_StartPLL(CLOCK_SRC_INT_RC2MHZ, 2000000, F_CPU);
|
||||
XMEGACLK_SetCPUClockSource(CLOCK_SRC_PLL);
|
||||
|
||||
// Start the 32MHz internal RC oscillator and start the DFLL to increase it to
|
||||
// 48MHz using the USB SOF as a reference
|
||||
/* Start the 32MHz internal RC oscillator and start the DFLL to increase it to 48MHz using the USB SOF as a reference */
|
||||
XMEGACLK_StartInternalOscillator(CLOCK_SRC_INT_RC32MHZ);
|
||||
XMEGACLK_StartDFLL(CLOCK_SRC_INT_RC32MHZ, DFLL_REF_INT_USBSOF, F_USB);
|
||||
|
||||
PMIC.CTRL = PMIC_LOLVLEN_bm | PMIC_MEDLVLEN_bm | PMIC_HILVLEN_bm;
|
||||
#endif
|
||||
|
||||
// Hardware Initialization */
|
||||
// set the three MUX control lines to output
|
||||
DDRB |= (1 << PIN4) | (1 << PIN5) | (1 << PIN6);
|
||||
// set every pin to low
|
||||
EN_MUX_LINE0;
|
||||
|
||||
DDRB |= (1 << PIN0) | (1 << PIN1);
|
||||
|
||||
LED0_OFF;
|
||||
LED1_OFF;
|
||||
|
||||
/* UART Hardware Initialization */
|
||||
eeprom_busy_wait();
|
||||
baudrate = eeprom_read_dword(&eep_baudrate);
|
||||
|
||||
if (baudrate == 0xffffffff)
|
||||
{
|
||||
eeprom_busy_wait();
|
||||
baudrate = 115200;
|
||||
eeprom_write_dword(&eep_baudrate, baudrate);
|
||||
}
|
||||
|
||||
uart_init( UART_BAUD_SELECT(baudrate, F_CPU) );
|
||||
sei();
|
||||
|
||||
/* USB Hardware Initialization */
|
||||
USB_Init();
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
void ProcessVirtualSerialData()
|
||||
{
|
||||
|
||||
// process the read data from Host here, if there is data to read
|
||||
int16_t ReceivedBytes = CDC_Device_BytesReceived(&VirtualSerial_CDC_Interface);
|
||||
if (ReceivedBytes > 0)
|
||||
{
|
||||
for (uint16_t i = 0; i < ReceivedBytes; i++)
|
||||
{
|
||||
int16_t ReceivedByte = CDC_Device_ReceiveByte(&VirtualSerial_CDC_Interface);
|
||||
// call the command controller - command processor
|
||||
cc_processData((uint8_t)ReceivedByte);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
void SendVirtualSerialData()
|
||||
{
|
||||
char* ReportString = NULL;
|
||||
|
||||
// send the next id from the agent FIFO
|
||||
if (FIFO_available(agent_fifo))
|
||||
{
|
||||
uint8_t id = FIFO_pop(agent_fifo);
|
||||
ReportString = " ";
|
||||
sprintf(ReportString, "%c%c%c%c%c%c", MSG_SOM1, MSG_SOM2,
|
||||
MSG_TYPE_AGENTID, id,
|
||||
MSG_EOM1, MSG_EOM2);
|
||||
}
|
||||
|
||||
if ((ReportString != NULL))
|
||||
{
|
||||
// Write the string to the virtual COM port via the created character stream
|
||||
USB_serialStreamWriteC(ReportString, 6);
|
||||
}
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
/** HID class driver callback function for the creation of HID reports to the host.
|
||||
*
|
||||
* \param[in] HIDInterfaceInfo Pointer to the HID class interface configuration structure being referenced
|
||||
* \param[in,out] ReportID Report ID requested by the host if non-zero, otherwise callback should set to the generated report ID
|
||||
* \param[in] ReportType Type of the report to create, either HID_REPORT_ITEM_In or HID_REPORT_ITEM_Feature
|
||||
* \param[out] ReportData Pointer to a buffer where the created report should be stored
|
||||
* \param[out] ReportSize Number of bytes written in the report (or zero if no report is to be sent)
|
||||
*
|
||||
* \return Boolean \c true to force the sending of the report, \c false to let the library determine if it needs to be sent
|
||||
/** Event handler for the USB_Connect event. This indicates that the device is enumerating via the status LEDs and
|
||||
* starts the library USB task to begin the enumeration and USB management process.
|
||||
*/
|
||||
bool CALLBACK_HID_Device_CreateHIDReport(USB_ClassInfo_HID_Device_t* const HIDInterfaceInfo,
|
||||
uint8_t* const ReportID,
|
||||
const uint8_t ReportType,
|
||||
void* ReportData,
|
||||
uint16_t* const ReportSize)
|
||||
{
|
||||
|
||||
// Determine which interface must have its report generated */
|
||||
if (HIDInterfaceInfo == &Keyboard_HID_Interface)
|
||||
{
|
||||
USB_KeyboardReport_Data_t* KeyboardReport = (USB_KeyboardReport_Data_t*)ReportData;
|
||||
|
||||
// update the key matrix values
|
||||
km_updateKeyStates();
|
||||
|
||||
// prepare the new sequence related to the pressed key
|
||||
for (uint8_t k = 0; k < LM_LED_CNT; k++)
|
||||
{
|
||||
if (km_getKeyState(k) == KEY_STATE_GO_DOWN)
|
||||
{
|
||||
FIFO_push(agent_fifo, k);
|
||||
|
||||
for (uint8_t s = 0; s < EEP_KEY_CNT; s++)
|
||||
{
|
||||
// ignore a mod/value combination of 0xff 0xff
|
||||
// just add the sequence to a "sequence execution FIFO" in case that it
|
||||
// is not an agent call
|
||||
// prevent multiple calls
|
||||
|
||||
// TODO manage multikey (simultanous pressed) shortcuts here
|
||||
|
||||
if (key_config[k][s][0] == 0xff && key_config[k][s][1] == 0xff)
|
||||
{
|
||||
s = EEP_KEY_CNT; // abort the loop, no more data found
|
||||
} else {
|
||||
FIFO_push(seq_mod_fifo, key_config[k][s][0]);
|
||||
FIFO_push(seq_val_fifo, key_config[k][s][1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO maybe we shall do ab bit more precise time measurement
|
||||
if (seq_delay > 0 && time_measure_cnt > seq_delay_time_measure_cnt_old)
|
||||
{
|
||||
seq_delay--;
|
||||
seq_delay_time_measure_cnt_old = time_measure_cnt;
|
||||
}
|
||||
|
||||
if (keystroke_delay_cnt > 0 && time_measure_cnt > keystroke_delay_time_measure_cnt_old)
|
||||
{
|
||||
// TODO test if NN seconds are gone
|
||||
keystroke_delay_cnt--;
|
||||
keystroke_delay_time_measure_cnt_old = time_measure_cnt;
|
||||
}
|
||||
|
||||
// execute the sequence execution FIFO content
|
||||
if (FIFO_available(seq_mod_fifo) && FIFO_available(seq_val_fifo) &&
|
||||
seq_delay == 0 && keystroke_delay_cnt == 0)
|
||||
{
|
||||
uint8_t mod = FIFO_pop(seq_mod_fifo);
|
||||
uint8_t val = FIFO_pop(seq_val_fifo);
|
||||
|
||||
// reset the keystroke delay
|
||||
keystroke_delay_cnt = keystroke_delay;
|
||||
|
||||
// process the data
|
||||
if ((mod & KEY_MOD_DELAY) != 0)
|
||||
{
|
||||
// start the delay
|
||||
seq_delay = val;
|
||||
} else {
|
||||
// TODO be aware of the os_type variable
|
||||
if ((mod & KEY_MOD_FN) != 0)
|
||||
KeyboardReport->Modifier += HID_KEYBOARD_MODIFIER_RIGHTSHIFT; // TODO fix the modifier
|
||||
if ((mod & KEY_MOD_SHIFT) != 0)
|
||||
KeyboardReport->Modifier += HID_KEYBOARD_MODIFIER_LEFTSHIFT;
|
||||
if ((mod & KEY_MOD_CTRL) != 0)
|
||||
KeyboardReport->Modifier += HID_KEYBOARD_MODIFIER_LEFTCTRL;
|
||||
if ((mod & KEY_MOD_ALT) != 0)
|
||||
KeyboardReport->Modifier += HID_KEYBOARD_MODIFIER_LEFTALT;
|
||||
if ((mod & KEY_MOD_ALTGR) != 0)
|
||||
KeyboardReport->Modifier += HID_KEYBOARD_MODIFIER_RIGHTALT;
|
||||
if ((mod & KEY_MOD_SUPER) != 0)
|
||||
KeyboardReport->Modifier += HID_KEYBOARD_MODIFIER_LEFTGUI;
|
||||
|
||||
// possible values: http://www.fourwalledcubicle.com/files/LUFA/Doc/120219/html/group___group___u_s_b_class_h_i_d_common.html
|
||||
KeyboardReport->KeyCode[0] = val; // TODO one key at a time, up to 6 is supported: http://www.fourwalledcubicle.com/files/LUFA/Doc/120219/html/struct_u_s_b___keyboard_report___data__t.html#a1c24d97011685d58ab05e2f65d7b2c1b
|
||||
}
|
||||
}
|
||||
|
||||
// Some debug and test code
|
||||
for (uint8_t i = 0; i < LM_LED_CNT; i++)
|
||||
{
|
||||
if (km_getKeyState(i) == KEY_STATE_GO_DOWN)
|
||||
lm_ledOn(i);
|
||||
if (km_getKeyState(i) == KEY_STATE_GO_UP)
|
||||
lm_ledOff(i);
|
||||
}
|
||||
|
||||
*ReportSize = sizeof(USB_KeyboardReport_Data_t);
|
||||
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
/** HID class driver callback function for the processing of HID reports from the host.
|
||||
*
|
||||
* \param[in] HIDInterfaceInfo Pointer to the HID class interface configuration structure being referenced
|
||||
* \param[in] ReportID Report ID of the received report from the host
|
||||
* \param[in] ReportType The type of report that the host has sent, either HID_REPORT_ITEM_Out or HID_REPORT_ITEM_Feature
|
||||
* \param[in] ReportData Pointer to a buffer where the received report has been stored
|
||||
* \param[in] ReportSize Size in bytes of the received HID report
|
||||
*/
|
||||
void CALLBACK_HID_Device_ProcessHIDReport(USB_ClassInfo_HID_Device_t* const HIDInterfaceInfo,
|
||||
const uint8_t ReportID,
|
||||
const uint8_t ReportType,
|
||||
const void* ReportData,
|
||||
const uint16_t ReportSize)
|
||||
{
|
||||
if (HIDInterfaceInfo == &Keyboard_HID_Interface)
|
||||
{
|
||||
uint8_t* LEDReport = (uint8_t*)ReportData;
|
||||
|
||||
/*
|
||||
// TODO process the Keyboard LED status information
|
||||
if (*LEDReport & HID_KEYBOARD_LED_NUMLOCK)
|
||||
|
||||
if (*LEDReport & HID_KEYBOARD_LED_CAPSLOCK)
|
||||
|
||||
if (*LEDReport & HID_KEYBOARD_LED_SCROLLLOCK)
|
||||
*/
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
/** CDC class driver callback function the processing of changes to the virtual
|
||||
* control lines sent from the host..
|
||||
*
|
||||
* \param[in] CDCInterfaceInfo Pointer to the CDC class interface configuration structure being referenced
|
||||
*/
|
||||
void EVENT_CDC_Device_ControLineStateChanged(USB_ClassInfo_CDC_Device_t *const CDCInterfaceInfo)
|
||||
{
|
||||
// You can get changes to the virtual CDC lines in this callback; a common
|
||||
// use-case is to use the Data Terminal Ready (DTR) flag to enable and
|
||||
// disable CDC communications in your application when set to avoid the
|
||||
// application blocking while waiting for a host to become ready and read
|
||||
// in the pending data from the USB endpoints.
|
||||
|
||||
bool HostReady = (CDCInterfaceInfo->State.ControlLineStates.HostToDevice & CDC_CONTROL_LINE_OUT_DTR) != 0;
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
/** Event handler for the library USB Connection event. */
|
||||
void EVENT_USB_Device_Connect(void)
|
||||
{
|
||||
SET_GLOB_USB_STATUS(STATUSMASK_USB_ENUMERATING);
|
||||
/* Indicate USB enumerating */
|
||||
SET_ERR_MASK(ERRMASK_USB_ENUMERATING);
|
||||
}
|
||||
|
||||
/** Event handler for the library USB Disconnection event. */
|
||||
/** Event handler for the USB_Disconnect event. This indicates that the device is no longer connected to a host via
|
||||
* the status LEDs and stops the USB management and CDC management tasks.
|
||||
*/
|
||||
void EVENT_USB_Device_Disconnect(void)
|
||||
{
|
||||
SET_GLOB_USB_STATUS(STATUSMASK_USB_NOTREADY);
|
||||
/* Indicate USB not ready */
|
||||
SET_ERR_MASK(ERRMASK_USB_NOTREADY);
|
||||
}
|
||||
|
||||
/** Event handler for the library USB Configuration Changed event. */
|
||||
/** Event handler for the USB_ConfigurationChanged event. This is fired when the host set the current configuration
|
||||
* of the USB device after enumeration - the device endpoints are configured and the CDC management tasks are started.
|
||||
*/
|
||||
void EVENT_USB_Device_ConfigurationChanged(void)
|
||||
{
|
||||
bool ConfigSuccess = true;
|
||||
|
||||
ConfigSuccess &= HID_Device_ConfigureEndpoints(&Keyboard_HID_Interface);
|
||||
ConfigSuccess &= CDC_Device_ConfigureEndpoints(&VirtualSerial_CDC_Interface);
|
||||
/* Setup first CDC Interface's Endpoints */
|
||||
ConfigSuccess &= Endpoint_ConfigureEndpoint(CDC1_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
|
||||
ConfigSuccess &= Endpoint_ConfigureEndpoint(CDC1_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
|
||||
ConfigSuccess &= Endpoint_ConfigureEndpoint(CDC1_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT, CDC_NOTIFICATION_EPSIZE, 1);
|
||||
|
||||
USB_Device_EnableSOFEvents();
|
||||
/* Setup second CDC Interface's Endpoints */
|
||||
ConfigSuccess &= Endpoint_ConfigureEndpoint(CDC2_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
|
||||
ConfigSuccess &= Endpoint_ConfigureEndpoint(CDC2_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
|
||||
ConfigSuccess &= Endpoint_ConfigureEndpoint(CDC2_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT, CDC_NOTIFICATION_EPSIZE, 1);
|
||||
|
||||
SET_GLOB_USB_STATUS(ConfigSuccess ? STATUSMASK_USB_READY : STATUSMASK_USB_ERROR);
|
||||
/* Reset line encoding baud rates so that the host knows to send new values */
|
||||
LineEncoding1.BaudRateBPS = 0;
|
||||
LineEncoding2.BaudRateBPS = 0;
|
||||
|
||||
/* Indicate endpoint configuration success or failure */
|
||||
SET_ERR_MASK(ConfigSuccess ? ERRMASK_USB_READY : ERRMASK_USB_ERROR);
|
||||
}
|
||||
|
||||
/** Event handler for the library USB Control Request reception event. */
|
||||
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
|
||||
* the device from the USB host before passing along unhandled control requests to the library for processing
|
||||
* internally.
|
||||
*/
|
||||
void EVENT_USB_Device_ControlRequest(void)
|
||||
{
|
||||
HID_Device_ProcessControlRequest(&Keyboard_HID_Interface);
|
||||
CDC_Device_ProcessControlRequest(&VirtualSerial_CDC_Interface);
|
||||
}
|
||||
/* Determine which interface's Line Coding data is being set from the wIndex parameter */
|
||||
void* LineEncodingData = (USB_ControlRequest.wIndex == 0) ? &LineEncoding1 : &LineEncoding2;
|
||||
|
||||
/** Event handler for the USB device Start Of Frame event. */
|
||||
void EVENT_USB_Device_StartOfFrame(void)
|
||||
{
|
||||
HID_Device_MillisecondElapsed(&Keyboard_HID_Interface);
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
|
||||
void USB_serialStreamWriteC(char* msg, uint16_t len)
|
||||
{
|
||||
for (uint8_t i = 0; i < len; i++)
|
||||
/* Process CDC specific control requests */
|
||||
switch (USB_ControlRequest.bRequest)
|
||||
{
|
||||
fputc(msg[i], &USBSerialStream);
|
||||
case CDC_REQ_GetLineEncoding:
|
||||
if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
|
||||
{
|
||||
Endpoint_ClearSETUP();
|
||||
|
||||
/* Write the line coding data to the control endpoint */
|
||||
Endpoint_Write_Control_Stream_LE(LineEncodingData, sizeof(CDC_LineEncoding_t));
|
||||
Endpoint_ClearOUT();
|
||||
}
|
||||
|
||||
break;
|
||||
case CDC_REQ_SetLineEncoding:
|
||||
if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
|
||||
{
|
||||
Endpoint_ClearSETUP();
|
||||
|
||||
/* Read the line coding data in from the host into the global struct */
|
||||
Endpoint_Read_Control_Stream_LE(LineEncodingData, sizeof(CDC_LineEncoding_t));
|
||||
Endpoint_ClearIN();
|
||||
}
|
||||
|
||||
break;
|
||||
case CDC_REQ_SetControlLineState:
|
||||
if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
|
||||
{
|
||||
Endpoint_ClearSETUP();
|
||||
Endpoint_ClearStatusStage();
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void USB_serialStreamWrite(char* msg)
|
||||
/** Function to manage CDC data transmission and reception to and from the host for the first CDC interface,
|
||||
* which sends answers or response data to the host.
|
||||
*/
|
||||
void CDC1_Task(void)
|
||||
{
|
||||
fputs(msg, &USBSerialStream);
|
||||
/* Device must be connected and configured for the task to run */
|
||||
if (USB_DeviceState != DEVICE_STATE_Configured)
|
||||
return;
|
||||
|
||||
//===========================================================================
|
||||
/* Select the Serial Rx Endpoint */
|
||||
Endpoint_SelectEndpoint(CDC1_RX_EPADDR);
|
||||
|
||||
if (Endpoint_IsOUTReceived())
|
||||
{
|
||||
/* Create a temp buffer big enough to hold the incoming endpoint packet */
|
||||
uint8_t Buffer[Endpoint_BytesInEndpoint()];
|
||||
|
||||
/* Remember how large the incoming packet is */
|
||||
uint16_t DataLength = Endpoint_BytesInEndpoint();
|
||||
|
||||
/* Read in the incoming packet into the buffer */
|
||||
Endpoint_Read_Stream_LE(&Buffer, DataLength, NULL);
|
||||
|
||||
/* Finalize the stream transfer to send the last packet */
|
||||
Endpoint_ClearOUT();
|
||||
|
||||
for (uint16_t i = 0; i < DataLength; i++)
|
||||
{
|
||||
// process the received data and descide to do an action
|
||||
LED0_ON;
|
||||
cc_processData(Buffer[i]);
|
||||
LED0_OFF;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//********************************************************************************//
|
||||
void USB_serialStreamWriteC(char *data, uint16_t len)
|
||||
{
|
||||
//===========================================================================
|
||||
/* Determine if data/answeres should be sent to the host
|
||||
* the previous RX section should be clarify that behaviour.
|
||||
*/
|
||||
|
||||
/* Flag management - Only allow one string to be sent per action */
|
||||
if (data != NULL && len > 0 && LineEncoding1.BaudRateBPS)
|
||||
{
|
||||
|
||||
LED1_ON;
|
||||
|
||||
/* Select the Serial Tx Endpoint */
|
||||
Endpoint_SelectEndpoint(CDC1_TX_EPADDR);
|
||||
|
||||
/* Write the String to the Endpoint */
|
||||
Endpoint_Write_Stream_LE(data, len, NULL);
|
||||
|
||||
/* Finalize the stream transfer to send the last packet */
|
||||
Endpoint_ClearIN();
|
||||
|
||||
/* Wait until the endpoint is ready for another packet */
|
||||
Endpoint_WaitUntilReady();
|
||||
|
||||
/* Send an empty packet to ensure that the host does not buffer data sent to it */
|
||||
Endpoint_ClearIN();
|
||||
|
||||
LED1_OFF;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/** Function to manage CDC data transmission and reception to and from the host for the second CDC interface,
|
||||
* which sends all data received from a node (mux) during USART to the host.
|
||||
*/
|
||||
void CDC2_Task(void)
|
||||
{
|
||||
/* Device must be connected and configured for the task to run */
|
||||
if (USB_DeviceState != DEVICE_STATE_Configured)
|
||||
return;
|
||||
|
||||
//===========================================================================
|
||||
/* Select the Serial Rx Endpoint */
|
||||
Endpoint_SelectEndpoint(CDC2_RX_EPADDR);
|
||||
|
||||
/* Check to see if any data has been received */
|
||||
if (Endpoint_IsOUTReceived())
|
||||
{
|
||||
/* Create a temp buffer big enough to hold the incoming endpoint packet */
|
||||
uint8_t Buffer[Endpoint_BytesInEndpoint()];
|
||||
|
||||
/* Remember how large the incoming packet is */
|
||||
uint16_t DataLength = Endpoint_BytesInEndpoint();
|
||||
|
||||
/* Read in the incoming packet into the buffer */
|
||||
Endpoint_Read_Stream_LE(&Buffer, DataLength, NULL);
|
||||
|
||||
/* Finalize the stream transfer to send the last packet */
|
||||
Endpoint_ClearOUT();
|
||||
|
||||
// TODO at this point send the data to the USART
|
||||
// Send USART &Buffer
|
||||
for (uint16_t i = 0; i < DataLength; i++)
|
||||
{
|
||||
uart_putc(Buffer[i]);
|
||||
}
|
||||
}
|
||||
|
||||
//return;
|
||||
|
||||
//===========================================================================
|
||||
uint8_t outBuffer[OUTPUT_BUFFER_SIZE];
|
||||
// TODO read the USART data and send them to the host
|
||||
// Fill &Buffer with USART data or send the USART input buffer direct
|
||||
uint16_t cnt = 0;
|
||||
int c = uart_getc();
|
||||
while (!(c & UART_NO_DATA) && cnt < OUTPUT_BUFFER_SIZE)
|
||||
{
|
||||
//LED0_ON;
|
||||
outBuffer[cnt] = c;
|
||||
c = uart_getc();
|
||||
cnt++;
|
||||
}
|
||||
|
||||
/*
|
||||
cnt = 1;
|
||||
outBuffer[0] = '2';
|
||||
*/
|
||||
|
||||
// send the data which was received from the uart connection
|
||||
if (cnt > 0)
|
||||
{
|
||||
/* Select the Serial Tx Endpoint */
|
||||
Endpoint_SelectEndpoint(CDC2_TX_EPADDR);
|
||||
|
||||
/* Write the received data to the endpoint */
|
||||
Endpoint_Write_Stream_LE(&outBuffer, cnt, NULL);
|
||||
|
||||
/* Finalize the stream transfer to send the last packet */
|
||||
Endpoint_ClearIN();
|
||||
|
||||
/* Wait until the endpoint is ready for the next packet */
|
||||
Endpoint_WaitUntilReady();
|
||||
|
||||
/* Send an empty packet to prevent host buffering */
|
||||
Endpoint_ClearIN();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue