//********************************// #include <ESP8266WiFi.h> #include <ESP8266mDNS.h> #include <ESP8266HTTPUpdateServer.h> #include <ESP8266WebServer.h> #include <WiFiManager.h> #include <ArduinoJson.h> #include <EEPROM.h> #include <FS.h> #include "config.h" //********* preprocessor block *********// #ifdef DEVELOPMENT #define LIGHT_NAME "Dimmable Hue Light (DEV)" #else #define LIGHT_NAME LIGHT_NAME_STR #endif //********* Config block *********// // blue, warmwhite, purple, white&red&green // blau, schwarz, rot, weiß // ch1, ch2, ch3, ch4 // D1, D2, D7, D5 uint8_t pins[LIGHTS_COUNT] = { 5, 4, 13, 14 }; #ifndef DEVELOPMENT IPAddress strip_ip (192, 168, 0, 26); // choose an unique IP Adress #endif #ifdef DEVELOPMENT IPAddress strip_ip (192, 168, 0, 27); // choose an unique IP Adress #endif IPAddress gateway_ip (192, 168, 0, 1); // Router IP IPAddress subnet_mask(255, 255, 255, 0); IPAddress dns (192, 168, 0, 1); //********************************// #define LIGHT_VERSION 2.1 #define LAST_STATE_STARTUP_LIGHT_LAST_STATE 0 #define LAST_STATE_STARTUP_LIGHT_ON_STATE 1 #define LAST_STATE_STARTUP_LIGHT_OFF_STATE 2 #define LIGHT_STATE_ON 1 #define LIGHT_STATE_OFF 0 #define TIMING_CONTROL_ENABLED 1 #define TIMING_CONTROL_DISABLED 0 #define SCENE_RELEAX 0 #define SCENE_BRIGHT 1 #define SCENE_NIGHTLY 2 #define TEST_PWM_STATE_INIT 0 #define TEST_PWM_STATE_CH1_INC 1 #define TEST_PWM_STATE_CH1_DEC 2 #define TEST_PWM_STATE_CH2_INC 3 #define TEST_PWM_STATE_CH2_DEC 4 #define TEST_PWM_STATE_CH3_INC 5 #define TEST_PWM_STATE_CH3_DEC 6 #define TEST_PWM_STATE_CH4_INC 7 #define TEST_PWM_STATE_CH4_DEC 8 //********************************// uint8_t scene; uint8_t tc_enabled; uint8_t tc_enabled_old; bool test_pwm = false; uint32_t test_pwm_lastcheck_ms = 0; uint8_t test_pwm_state = TEST_PWM_STATE_INIT; bool light_state[LIGHTS_COUNT]; bool in_transition; int default_transitiontime = 4; // 4 = 4 seconds uint16_t transitiontime[LIGHTS_COUNT]; uint16_t bri[LIGHTS_COUNT]; uint16_t current_pwm[LIGHTS_COUNT]; float step_level[LIGHTS_COUNT]; float current_bri[LIGHTS_COUNT]; byte mac[6]; ESP8266WebServer server(80); ESP8266HTTPUpdateServer httpUpdateServer; uint32_t last_lightengine_activity = 0; //********************************// void apply_scene(uint8_t new_scene, uint8_t light) { if (new_scene == SCENE_RELEAX) { bri[light] = 144; } else if (new_scene == SCENE_BRIGHT) { bri[light] = 254; } else if (new_scene == SCENE_NIGHTLY) { bri[0] = 25; bri[1] = 0; bri[2] = 0; bri[3] = 0; } } //********************************// void process_lightdata(uint8_t light, float tt) { if (light_state[light]) { step_level[light] = (bri[light] - current_bri[light]) / tt; } else { step_level[light] = current_bri[light] / tt; } } //********************************// void lightEngine() { if (millis() < (last_lightengine_activity + TIME_LIGHTENGINE_INTERVAL_MS)) { // abort processing, the transition setting is a delay of seconds return; } last_lightengine_activity = millis(); for (int i = 0; i < LIGHTS_COUNT; i++) { if (light_state[i]) { if (bri[i] != current_bri[i]) { in_transition = true; current_bri[i] += step_level[i] / BRI_MOD_STEPS_PER_SEC; if ((step_level[i] > 0.0 && current_bri[i] > bri[i]) || (step_level[i] < 0.0 && current_bri[i] < bri[i])) { current_bri[i] = bri[i]; //Serial.println("Reached target bri[" + (String)i + "] = " + (String)bri[i]); } uint16_t tmp_pwm = calcPWM(current_bri[i]); current_pwm[i] = tmp_pwm; //Serial.println("lon: pin" + (String)i + " = PWM(" + (String)tmp_pwm + ")"); analogWrite(pins[i], tmp_pwm); } } else { // light state is off if (current_bri[i] != 0) { in_transition = true; current_bri[i] += step_level[i] / BRI_MOD_STEPS_PER_SEC; if (current_bri[i] < 0) { current_bri[i] = 0; //Serial.println("Reached target bri[" + (String)i + "] = " + (String)bri[i]); } uint16_t tmp_pwm = calcPWM(current_bri[i]); current_pwm[i] = tmp_pwm; //Serial.println("loff: pin" + (String)i + " = PWM(" + (String)tmp_pwm + ")"); analogWrite(pins[i], tmp_pwm); } } } // for loop end if (in_transition) { delay(6); in_transition = false; } } //********************************// uint16_t calcPWM(float tbri) { uint16_t tmp_pwm = PWM_OFF; if (tbri > 0.0) { tmp_pwm = PWM_MIN + (int)(tbri * BRI_TO_PWM_FACTOR); } if (tmp_pwm > PWM_MAX) { tmp_pwm = PWM_MAX; } return tmp_pwm; } //********************************// void read_eeprom_config() { uint8_t tmp = EEPROM.read(EEPROM_TIMING_CONTROL_ENABLED_ADDRESS); if (tmp == TIMING_CONTROL_DISABLED) { tc_enabled = TIMING_CONTROL_DISABLED; } else if (tmp == TIMING_CONTROL_ENABLED) { tc_enabled = TIMING_CONTROL_ENABLED; } else { // Write default value EEPROM.write(EEPROM_TIMING_CONTROL_ENABLED_ADDRESS, TIMING_CONTROL_DISABLED); EEPROM.commit(); tc_enabled = TIMING_CONTROL_DISABLED; Serial.println("Written default timing control config to EEPROM (disabled)"); } Serial.println("Timing Control status: " + (String)tc_enabled); if (EEPROM.read(EEPROM_LAST_STATE_STARTUP_ADDRESS) > 2) { // set the default value on uninitialized EEPROM EEPROM.write(EEPROM_LAST_STATE_STARTUP_ADDRESS, 0); EEPROM.commit(); Serial.println("Written default 'last state' config to EEPROM"); } Serial.println("Last state startup setting: " + (String)EEPROM.read(EEPROM_LAST_STATE_STARTUP_ADDRESS)); if (EEPROM.read(EEPROM_SCENE_ADDRESS) > 2) { // set the default value on uninitialized EEPROM EEPROM.write(EEPROM_SCENE_ADDRESS, 0); EEPROM.commit(); Serial.println("Written default scene config to EEPROM"); } Serial.println("Scene setting: " + (String)EEPROM.read(EEPROM_SCENE_ADDRESS)); #ifdef USE_STATIC_IP if (EEPROM.read(EEPROM_DYNAMIC_IP_ADDRESS) > 1) { EEPROM.write(EEPROM_DYNAMIC_IP_ADDRESS, 0); EEPROM.commit(); Serial.println("Written default dynamic IP setting (disabled) to EEPROM"); } #else if (EEPROM.read(EEPROM_DYNAMIC_IP_ADDRESS) > 1) { EEPROM.write(EEPROM_DYNAMIC_IP_ADDRESS, 1); EEPROM.commit(); Serial.println("Written default dynamic IP setting (enabled) to EEPROM"); } #endif Serial.println("Dynamic IP setting: " + (String)EEPROM.read(EEPROM_DYNAMIC_IP_ADDRESS)); for (uint8_t light = 0; light < LIGHTS_COUNT; light++) { apply_scene(EEPROM.read(EEPROM_SCENE_ADDRESS), light); step_level[light] = bri[light] / 150.0; if (EEPROM.read(EEPROM_LAST_STATE_STARTUP_ADDRESS) == LAST_STATE_STARTUP_LIGHT_LAST_STATE || (EEPROM.read(EEPROM_LAST_STATE_STARTUP_ADDRESS) == LAST_STATE_STARTUP_LIGHT_ON_STATE && EEPROM.read(EEPROM_LAST_STATE_ADDRESS + light) == LIGHT_STATE_ON)) { light_state[light] = true; // set the light state to on } Serial.println("light[" + (String)light + "] = " + (String)light_state[light]); } } //********************************// void setup() { EEPROM.begin(256); SPIFFS.begin(); #ifdef DEVELOPMENT // Serial is not used in non development mode Serial.begin(SERIAL_BAUD_RATE); #endif Serial.flush(); delay(1000); //Serial.println("Flash size: " + (String)ESP.getFlashChipSize()); Dir dir = SPIFFS.openDir("/"); Serial.println("\n\nSPIFFS directory content:"); while (dir.next()) { String fileName = dir.fileName(); size_t fileSize = dir.fileSize(); Serial.printf("Datei Name: %s, Größe: %s\n", fileName.c_str(), formatBytes(fileSize).c_str()); } if (EEPROM.read(EEPROM_DYNAMIC_IP_ADDRESS) == 0) { WiFi.config(strip_ip, gateway_ip, subnet_mask, dns); } read_eeprom_config(); for (int j = 0; j < 200; j++) { lightEngine(); } WiFi.mode(WIFI_STA); WiFiManager wifiManager; wifiManager.setConfigPortalTimeout(120); wifiManager.autoConnect(LIGHT_NAME); IPAddress myIP = WiFi.localIP(); Serial.print("IP: "); Serial.println(myIP); analogWriteFreq(PWM_FREQ); if (!light_state[0]) { // Show that we are connected analogWrite(pins[0], 100); delay(500); analogWrite(pins[0], 0); } WiFi.macAddress(mac); pinMode(LED_BUILTIN, OUTPUT); // Initialize the LED_BUILTIN pin as an output digitalWrite(LED_BUILTIN, HIGH); // Turn the LED off by making the voltage HIGH httpUpdateServer.setup(&server); // start http server init_webserver(); Serial.println("Init timinc control"); tc_init(); Serial.println("Starting webserver"); server.begin(); } // end of setup //********************************// void loop() { server.handleClient(); ESP.wdtFeed(); lightEngine(); //Serial.println("tc_enabled = " + (String)tc_enabled); tc_update_loop(); ESP.wdtFeed(); test_pwm_main(); delay(100); } //********************************// void handleNotFound() { String message = "File Not Found\n\n"; message += "URI: "; message += server.uri(); message += "\nMethod: "; message += (server.method() == HTTP_GET) ? "GET" : "POST"; message += "\nArguments: "; message += server.args(); message += "\n"; for (uint8_t i = 0; i < server.args(); i++) { message += " " + server.argName(i) + ": " + server.arg(i) + "\n"; } server.send(404, "text/plain", message); } //********************************// void init_webserver() { server.on("/state", HTTP_PUT, []() { // HTTP PUT request used to set a new light state DynamicJsonDocument root(512); DeserializationError error = deserializeJson(root, server.arg("plain")); if (error) { server.send(404, "text/plain", "FAIL. " + server.arg("plain")); } else { for (JsonPair state : root.as<JsonObject>()) { const char* key = state.key().c_str(); int light = atoi(key) - 1; JsonObject values = state.value(); uint8_t tmp = EEPROM.read(EEPROM_LAST_STATE_STARTUP_ADDRESS); if (values.containsKey("on")) { if (values["on"]) { light_state[light] = true; if (tmp == LAST_STATE_STARTUP_LIGHT_LAST_STATE && EEPROM.read(EEPROM_LAST_STATE_ADDRESS + light) == LIGHT_STATE_OFF) { EEPROM.write(EEPROM_LAST_STATE_ADDRESS + light, LIGHT_STATE_ON); } } else { light_state[light] = false; if (tmp == LAST_STATE_STARTUP_LIGHT_LAST_STATE && EEPROM.read(EEPROM_LAST_STATE_ADDRESS + light) == LIGHT_STATE_ON) { EEPROM.write(EEPROM_LAST_STATE_ADDRESS + light, LIGHT_STATE_OFF); } } } if (values.containsKey("bri")) { bri[light] = values["bri"]; } if (values.containsKey("bri_inc")) { bri[light] += (int)values["bri_inc"]; if (bri[light] > 255) bri[light] = 255; else if (bri[light] < 1) bri[light] = 1; } if (values.containsKey("transitiontime")) { default_transitiontime = values["transitiontime"]; if (tc_enabled == TIMING_CONTROL_DISABLED) { for (uint8_t i = 0 ; i < LIGHTS_COUNT; i++) { // set the default transition time for all lights process_lightdata(i, default_transitiontime); } } } } String output; serializeJson(root, output); server.send(200, "text/plain", output); } }); server.on("/state", HTTP_GET, []() { // HTTP GET request used to fetch current light state uint8_t light = server.arg("light").toInt() - 1; DynamicJsonDocument root(512); root["on"] = light_state[light]; root["bri"] = bri[light]; root["curbri"] = (int)current_bri[light]; root["curpwm"] = current_pwm[light]; String output; serializeJson(root, output); server.send(200, "text/plain", output); }); server.on("/detect", []() { // HTTP GET request used to discover the light type char macString[32] = { 0 }; sprintf(macString, "%02X:%02X:%02X:%02X:%02X:%02X", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); DynamicJsonDocument root(1024); root["name"] = LIGHT_NAME; root["lights"] = LIGHTS_COUNT; root["protocol"] = "native_multi"; root["modelid"] = "LWB010"; root["type"] = "dimmable_light"; root["mac"] = String(macString); root["version"] = LIGHT_VERSION; String output; serializeJson(root, output); server.send(200, "text/plain", output); }); server.on("/test_pwm", []() { test_pwm = true; tc_enabled_old = tc_enabled; tc_enabled = TIMING_CONTROL_DISABLED; server.send(200, "text/html", "OK"); }); server.on("/tc_data_blocks_read", []() { String output = tc_getJsonData(); server.send(200, "application/json", output); }); server.on("/tc_data_blocks_store", []() { if (server.hasArg("data")) { String jsonData = server.arg("data"); Serial.println("Received: " + jsonData); tc_jsonDataBlocksToEEPROM(jsonData); server.send(200, "text/html", "tcdata saved"); } }); server.on("/js_top", []() { server.send(200, "text/html", replacePlaceholder(loadSPIFFSFile("/top.js"))); }); server.on("/js_bottom", []() { server.send(200, "text/html", replacePlaceholder(loadSPIFFSFile("/bottom.js"))); }); server.on("/css", []() { server.send(200, "text/css", loadSPIFFSFile("/style.css")); }); server.on("/", []() { if (server.hasArg("transition")) { default_transitiontime = server.arg("transition").toFloat(); if (tc_enabled == TIMING_CONTROL_DISABLED) { for (uint8_t i = 0 ; i < LIGHTS_COUNT; i++) { // set the default transition time for all lights process_lightdata(i, default_transitiontime); Serial.println("transition for light " + (String)i + " set to " + (String)default_transitiontime); } } } // startup behavior switch handling if (server.hasArg("startup")) { int startup = server.arg("startup").toInt(); if (EEPROM.read(EEPROM_LAST_STATE_STARTUP_ADDRESS) != startup) { EEPROM.write(EEPROM_LAST_STATE_STARTUP_ADDRESS, startup); for (uint8_t i = 0; i < LIGHTS_COUNT; i++) { uint8_t tmp = (light_state[i] == true ? LIGHT_STATE_ON : LIGHT_STATE_OFF); if (EEPROM.read(EEPROM_LAST_STATE_ADDRESS + i) != tmp) { EEPROM.write(EEPROM_LAST_STATE_ADDRESS + i, tmp); } } EEPROM.commit(); Serial.print("Startup behavior set to "); Serial.println(EEPROM.read(EEPROM_LAST_STATE_STARTUP_ADDRESS)); } } // timing controller switch handling if (server.hasArg("tc")) { if (server.arg("tc") == "true") { if (tc_enabled == TIMING_CONTROL_DISABLED) { if (EEPROM.read(EEPROM_TIMING_CONTROL_ENABLED_ADDRESS) != TIMING_CONTROL_ENABLED) { tc_enabled = TIMING_CONTROL_ENABLED; EEPROM.write(EEPROM_TIMING_CONTROL_ENABLED_ADDRESS, TIMING_CONTROL_ENABLED); EEPROM.commit(); Serial.print("Timing control = "); Serial.println(EEPROM.read(EEPROM_TIMING_CONTROL_ENABLED_ADDRESS)); tc_update_main(); // call the main update function to read data and set the light states } } } else { // tc is set to false or something else if (tc_enabled == TIMING_CONTROL_ENABLED) { tc_enabled = TIMING_CONTROL_DISABLED; if (EEPROM.read(EEPROM_TIMING_CONTROL_ENABLED_ADDRESS) != TIMING_CONTROL_DISABLED) { EEPROM.write(EEPROM_TIMING_CONTROL_ENABLED_ADDRESS, TIMING_CONTROL_DISABLED); EEPROM.commit(); Serial.print("Timing control = "); Serial.println(EEPROM.read(EEPROM_TIMING_CONTROL_ENABLED_ADDRESS)); for (uint8_t i = 0 ; i < LIGHTS_COUNT; i++) { // set the default transition time for all lights process_lightdata(i, default_transitiontime); } } } } } // scene switch handling if (server.hasArg("scene")) { scene = server.arg("scene").toInt(); if (EEPROM.read(EEPROM_SCENE_ADDRESS) != scene) { EEPROM.write(EEPROM_SCENE_ADDRESS, scene); EEPROM.commit(); Serial.print("Scene set to "); Serial.println(EEPROM.read(EEPROM_SCENE_ADDRESS)); } } if (server.hasArg("dip")) { uint8_t tmp = EEPROM.read(EEPROM_DYNAMIC_IP_ADDRESS); uint8_t tmp2 = (server.arg("dip") == "true" ? 1 : 0); if (tmp != tmp2) { EEPROM.write(EEPROM_DYNAMIC_IP_ADDRESS, tmp2); EEPROM.commit(); Serial.print("Set dynamic IP to "); Serial.println(EEPROM.read(EEPROM_DYNAMIC_IP_ADDRESS)); } } // process the received data for every light for (int light = 0; light < LIGHTS_COUNT; light++) { if (server.hasArg("bri" + (String)light)) { int tmp = (int)server.arg("bri" + (String)light).toInt(); if (tmp > 255) { tmp = 255; } else if (tmp < 0) { tmp = 0; } bri[light] = tmp; Serial.print("Brightness "); Serial.print(light); Serial.print(" set to "); Serial.println(bri[light]); } if (server.hasArg("on" + (String)light)) { uint8_t tmp = EEPROM.read(EEPROM_LAST_STATE_STARTUP_ADDRESS); if (server.arg("on" + (String)light) == "true" && light_state[light] == false) { light_state[light] = true; if (tmp == 0 && EEPROM.read(EEPROM_LAST_STATE_ADDRESS + light) == 0) { EEPROM.write(EEPROM_LAST_STATE_ADDRESS + light, LIGHT_STATE_ON); EEPROM.commit(); } Serial.print("Light "); Serial.print(light); Serial.print(" state set to "); Serial.println(light_state[light]); } else if (server.arg("on" + (String)light) == "false" && light_state[light] == true) { light_state[light] = false; if (tmp == 0 && EEPROM.read(EEPROM_LAST_STATE_ADDRESS + light) == 1) { EEPROM.write(EEPROM_LAST_STATE_ADDRESS + light, LIGHT_STATE_OFF); EEPROM.commit(); } Serial.print("Light "); Serial.print(light); Serial.print(" state set to "); Serial.println(light_state[light]); } if (tc_enabled == TIMING_CONTROL_DISABLED) { process_lightdata(light, default_transitiontime); } } else { // light is off if (tc_enabled == TIMING_CONTROL_DISABLED) { process_lightdata(light, default_transitiontime); } } // start alerting for every light if (server.hasArg("alert")) { if (light_state[light]) { current_bri[light] = 0; } else { current_bri[light] = 255; } } } // process all lights if (server.hasArg("resettc")) { // reqrite the tc config and reboot tc_write_default(); ESP.reset(); } if (server.hasArg("reset")) { ESP.reset(); } // ***** Generate static HTML page ***** // String tmp1 = genHMTLTop(); String tmp2 = genLightControlHTML(); String tmp3 = getIndexHTMLMiddle(); String tmp4 = genConfigHTML(); String tmp5 = genHMTLBottom(); server.send(200, "text/html", tmp1 + tmp2 + tmp3 + tmp4 + tmp5); }); server.on("/reset", []() { // trigger manual reset server.send(200, "text/html", "reset"); delay(1000); ESP.restart(); }); server.onNotFound(handleNotFound); } //********************************// String genHMTLTop() { return replacePlaceholder(getIndexHTMLTop()); } String genHMTLBottom() { return replacePlaceholder(getIndexHTMLBottom()); } String genConfigHTML() { // +++++ Generate config part of the page +++++ return replacePlaceholder(getConfigHTML()); } String genTCEditHTML() { return replacePlaceholder(getTCDataEditHTML()); } String genLightControlHTML() { String http_content = ""; // +++++ Generate lights part of the HTML page +++++ // Light control for (uint8 light_num = 0; light_num < LIGHTS_COUNT; light_num++) { // Generate lights part of the HTML page String tmp_light_content = getLightControlHTML(); // on/off buttons and slider tmp_light_content.replace("{{LIGHT_NUMBER}}", (String)(light_num + 1)); tmp_light_content.replace("{{LIGHT_NUMBER_DEC}}", (String)light_num); // add the lights code to the html output string http_content += tmp_light_content; } return http_content; } //********************************// String replacePlaceholder(String http_content) { http_content.replace("{{LIGHT_NAME}}", (String)LIGHT_NAME); http_content.replace("{{LIGHT_COUNT}}", (String)LIGHTS_COUNT); int tc_val = EEPROM.read(EEPROM_TIMING_CONTROL_ENABLED_ADDRESS); if (tc_val == TIMING_CONTROL_ENABLED) { http_content.replace("{{TC_LINK_PRIMARY_ON}}", "pure-button-primary"); } else { http_content.replace("{{TC_LINK_PRIMARY_ON}}", ""); } if (tc_val == TIMING_CONTROL_DISABLED) { http_content.replace("{{TC_LINK_PRIMARY_OFF}}", "pure-button-primary"); } else { http_content.replace("{{TC_LINK_PRIMARY_OFF}}", ""); } http_content.replace("{{TRANSITION_TIME}}", (String)default_transitiontime); int ls_val = EEPROM.read(EEPROM_LAST_STATE_STARTUP_ADDRESS); if (ls_val == LAST_STATE_STARTUP_LIGHT_LAST_STATE) { http_content.replace("{{STARTUP_SELECTED_LS_0}}", "selected=\"selected\""); } else { http_content.replace("{{STARTUP_SELECTED_LS_0}}", ""); } if (ls_val == LAST_STATE_STARTUP_LIGHT_ON_STATE) { http_content.replace("{{STARTUP_SELECTED_ON_1}}", "selected=\"selected\""); } else { http_content.replace("{{STARTUP_SELECTED_ON_1}}", ""); } if (ls_val == LAST_STATE_STARTUP_LIGHT_OFF_STATE) { http_content.replace("{{STARTUP_SELECTED_OFF_2}}", "selected=\"selected\""); } else { http_content.replace("{{STARTUP_SELECTED_OFF_2}}", ""); } // scene int sc_val = EEPROM.read(EEPROM_SCENE_ADDRESS); if (sc_val == SCENE_RELEAX) { http_content.replace("{{SCENE_SELECTED_RELAX_0}}", "selected=\"selected\""); } else { http_content.replace("{{SCENE_SELECTED_RELAX_0}}", ""); } if (sc_val == SCENE_BRIGHT) { http_content.replace("{{SCENE_SELECTED_BRIGHT_1}}", "selected=\"selected\""); } else { http_content.replace("{{SCENE_SELECTED_BRIGHT_1}}", ""); } if (sc_val == SCENE_NIGHTLY) { http_content.replace("{{SCENE_SELECTED_NIGHT_2}}", "selected=\"selected\""); } else { http_content.replace("{{SCENE_SELECTED_NIGHT_2}}", ""); } // Wifi settings http_content.replace("{{WIFI_SSID}}", WiFi.SSID()); // Network settings uint8_t dip = EEPROM.read(EEPROM_DYNAMIC_IP_ADDRESS); if (dip) { http_content.replace("{{DIP_LINK_ON_PRIMARY}}", "pure-button-primary"); http_content.replace("{{DIP_LINK_OFF_PRIMARY}}", ""); } else { http_content.replace("{{DIP_LINK_OFF_PRIMARY}}", "pure-button-primary"); http_content.replace("{{DIP_LINK_ON_PRIMARY}}", ""); } // network config http_content.replace("{{WIFI_CFG_IP}}", WiFi.localIP().toString()); http_content.replace("{{WIFI_CFG_GW}}", WiFi.gatewayIP().toString()); http_content.replace("{{WIFI_CFG_NM}}", WiFi.subnetMask().toString()); http_content.replace("{{WIFI_CFG_DNS}}", WiFi.dnsIP().toString()); // add the current ip address to the page http_content.replace("{{IP_ADDRESS}}", WiFi.localIP().toString()); // set the pwm values http_content.replace("{{PWM_MIN}}", (String)PWM_MIN); http_content.replace("{{PWM_MAX}}", (String)PWM_MAX); return http_content; } //********************************// String loadSPIFFSFile(String fname) { File file = SPIFFS.open(fname, "r"); if (!file) { Serial.println("Failed to open file " + fname); return ""; } String contents = file.readString(); file.close(); return contents; } //********************************// String getIndexHTMLTop() { // load file return loadSPIFFSFile("/index_template_top.html"); } String getIndexHTMLMiddle() { // load file return loadSPIFFSFile("/index_template_middle.html"); } String getIndexHTMLBottom() { // load file return loadSPIFFSFile("/index_template_bottom.html"); } //********************************// String getConfigHTML() { // load file return loadSPIFFSFile("/config_template.html"); } //********************************// String getTCDataEditHTML() { // load file return loadSPIFFSFile("/tc_data_edit.html"); } //********************************// String getLightControlHTML() { // load file return loadSPIFFSFile("/light_control_template.html"); } //********************************// String formatBytes(size_t bytes) { if (bytes < 1024) { return String(bytes) + " B"; } else if (bytes < (1024 * 1024)) { return String(bytes / 1024.0) + " KB"; } else if (bytes < (1024 * 1024 * 1024)) { return String(bytes / 1024.0 / 1024.0) + " MB"; } else { return String(bytes / 1024.0 / 1024.0 / 1024.0) + " GB"; } } //********************************// void test_pwm_main() { if (test_pwm == false) { return; } else if ((test_pwm_lastcheck_ms + PWM_TEST_INTERVA_MS) <= millis()) { test_pwm_lastcheck_ms = millis(); switch (test_pwm_state) { // ----------------------- // case TEST_PWM_STATE_INIT: // disable the lights for (uint8_t i = 0; i < LIGHTS_COUNT; i++) { light_state[i] = false; bri[i] = 0; current_bri[i] = 0; current_pwm[i] = 0; transitiontime[i] = 0; process_lightdata(i, transitiontime[i]); } light_state[0] = true; test_pwm_state = TEST_PWM_STATE_CH1_INC; break; // ----------------------- // case TEST_PWM_STATE_CH1_INC: if (bri[0] < 255) { bri[0] += TEST_PWM_CHG_CNT; transitiontime[0] = 1; process_lightdata(0, transitiontime[0]); } else { test_pwm_state = TEST_PWM_STATE_CH1_DEC; } break; case TEST_PWM_STATE_CH1_DEC: if (bri[0] > 0) { bri[0] -= TEST_PWM_CHG_CNT; transitiontime[0] = 1; process_lightdata(0, transitiontime[0]); } else { light_state[0] = false; bri[0] = 0; current_bri[0] = 0; current_pwm[0] = 0; transitiontime[0] = 0; process_lightdata(0, transitiontime[0]); light_state[1] = true; test_pwm_state = TEST_PWM_STATE_CH2_INC; } break; // ----------------------- // case TEST_PWM_STATE_CH2_INC: if (bri[1] < 255) { bri[1] += TEST_PWM_CHG_CNT; transitiontime[1] = 1; process_lightdata(1, transitiontime[1]); } else { test_pwm_state = TEST_PWM_STATE_CH2_DEC; } break; case TEST_PWM_STATE_CH2_DEC: if (bri[1] > 0) { bri[1] -= TEST_PWM_CHG_CNT; transitiontime[1] = 1; process_lightdata(1, transitiontime[1]); } else { light_state[1] = false; bri[1] = 0; current_bri[1] = 0; current_pwm[1] = 0; transitiontime[1] = 0; process_lightdata(1, transitiontime[1]); light_state[2] = true; test_pwm_state = TEST_PWM_STATE_CH3_INC; } break; // ----------------------- // case TEST_PWM_STATE_CH3_INC: if (bri[2] < 255) { bri[2] += TEST_PWM_CHG_CNT; transitiontime[2] = 1; process_lightdata(2, transitiontime[2]); } else { test_pwm_state = TEST_PWM_STATE_CH3_DEC; } break; case TEST_PWM_STATE_CH3_DEC: if (bri[2] > 0) { bri[2] -= TEST_PWM_CHG_CNT; transitiontime[2] = 1; process_lightdata(2, transitiontime[2]); } else { light_state[2] = false; bri[2] = 0; current_bri[2] = 0; current_pwm[2] = 0; transitiontime[2] = 0; process_lightdata(2, transitiontime[2]); light_state[3] = true; test_pwm_state = TEST_PWM_STATE_CH4_INC; } break; // ----------------------- // case TEST_PWM_STATE_CH4_INC: if (bri[3] < 255) { bri[3] += TEST_PWM_CHG_CNT; transitiontime[3] = 1; process_lightdata(3, transitiontime[3]); } else { test_pwm_state = TEST_PWM_STATE_CH4_DEC; } break; case TEST_PWM_STATE_CH4_DEC: if (bri[3] > 0) { bri[3] -= TEST_PWM_CHG_CNT; transitiontime[3] = 1; process_lightdata(3, transitiontime[3]); } else { test_pwm = false; tc_enabled = tc_enabled_old; for (uint8_t i = 0; i < LIGHTS_COUNT; i++) { light_state[i] = false; bri[i] = 0; current_bri[i] = 0; current_pwm[i] = 0; transitiontime[i] = 0; process_lightdata(i, transitiontime[i]); } tc_reset(); tc_update_main(); // load the tc if required test_pwm_state = TEST_PWM_STATE_INIT; } break; // ----------------------- // default: test_pwm_state = TEST_PWM_STATE_INIT; } Serial.println("---"); for (uint8_t i = 0; i < LIGHTS_COUNT; i++) { Serial.println("light_state[" + (String)i + "] = " + (String)light_state[i]); Serial.println("bri[" + (String)i + "] = " + (String)bri[i]); Serial.println("current_bri[" + (String)i + "] = " + (String)current_bri[i]); Serial.println("current_pwm[" + (String)i + "] = " + (String)current_pwm[i]); Serial.println("transitiontime[" + (String)i + "] = " + (String)transitiontime[i]); } } } //********************************//