weatherstation/firmware/libraries/Adafruit_BusIO/Adafruit_BusIO_Register.cpp

366 lines
11 KiB
C++
Raw Normal View History

2022-11-11 11:11:25 +01:00
#include <Adafruit_BusIO_Register.h>
#if !defined(SPI_INTERFACES_COUNT) || \
(defined(SPI_INTERFACES_COUNT) && (SPI_INTERFACES_COUNT > 0))
/*!
* @brief Create a register we access over an I2C Device (which defines the
* bus and address)
* @param i2cdevice The I2CDevice to use for underlying I2C access
* @param reg_addr The address pointer value for the I2C/SMBus register, can
* be 8 or 16 bits
* @param width The width of the register data itself, defaults to 1 byte
* @param byteorder The byte order of the register (used when width is > 1),
* defaults to LSBFIRST
* @param address_width The width of the register address itself, defaults
* to 1 byte
*/
Adafruit_BusIO_Register::Adafruit_BusIO_Register(Adafruit_I2CDevice *i2cdevice,
uint16_t reg_addr,
uint8_t width,
uint8_t byteorder,
uint8_t address_width) {
_i2cdevice = i2cdevice;
_spidevice = nullptr;
_addrwidth = address_width;
_address = reg_addr;
_byteorder = byteorder;
_width = width;
}
/*!
* @brief Create a register we access over an SPI Device (which defines the
* bus and CS pin)
* @param spidevice The SPIDevice to use for underlying SPI access
* @param reg_addr The address pointer value for the SPI register, can
* be 8 or 16 bits
* @param type The method we use to read/write data to SPI (which is not
* as well defined as I2C)
* @param width The width of the register data itself, defaults to 1 byte
* @param byteorder The byte order of the register (used when width is > 1),
* defaults to LSBFIRST
* @param address_width The width of the register address itself, defaults
* to 1 byte
*/
Adafruit_BusIO_Register::Adafruit_BusIO_Register(Adafruit_SPIDevice *spidevice,
uint16_t reg_addr,
Adafruit_BusIO_SPIRegType type,
uint8_t width,
uint8_t byteorder,
uint8_t address_width) {
_spidevice = spidevice;
_spiregtype = type;
_i2cdevice = nullptr;
_addrwidth = address_width;
_address = reg_addr;
_byteorder = byteorder;
_width = width;
}
/*!
* @brief Create a register we access over an I2C or SPI Device. This is a
* handy function because we can pass in nullptr for the unused interface,
* allowing libraries to mass-define all the registers
* @param i2cdevice The I2CDevice to use for underlying I2C access, if
* nullptr we use SPI
* @param spidevice The SPIDevice to use for underlying SPI access, if
* nullptr we use I2C
* @param reg_addr The address pointer value for the I2C/SMBus/SPI register,
* can be 8 or 16 bits
* @param type The method we use to read/write data to SPI (which is not
* as well defined as I2C)
* @param width The width of the register data itself, defaults to 1 byte
* @param byteorder The byte order of the register (used when width is > 1),
* defaults to LSBFIRST
* @param address_width The width of the register address itself, defaults
* to 1 byte
*/
Adafruit_BusIO_Register::Adafruit_BusIO_Register(
Adafruit_I2CDevice *i2cdevice, Adafruit_SPIDevice *spidevice,
Adafruit_BusIO_SPIRegType type, uint16_t reg_addr, uint8_t width,
uint8_t byteorder, uint8_t address_width) {
_spidevice = spidevice;
_i2cdevice = i2cdevice;
_spiregtype = type;
_addrwidth = address_width;
_address = reg_addr;
_byteorder = byteorder;
_width = width;
}
/*!
* @brief Write a buffer of data to the register location
* @param buffer Pointer to data to write
* @param len Number of bytes to write
* @return True on successful write (only really useful for I2C as SPI is
* uncheckable)
*/
bool Adafruit_BusIO_Register::write(uint8_t *buffer, uint8_t len) {
uint8_t addrbuffer[2] = {(uint8_t)(_address & 0xFF),
(uint8_t)(_address >> 8)};
if (_i2cdevice) {
return _i2cdevice->write(buffer, len, true, addrbuffer, _addrwidth);
}
if (_spidevice) {
if (_spiregtype == ADDRESSED_OPCODE_BIT0_LOW_TO_WRITE) {
// very special case!
// pass the special opcode address which we set as the high byte of the
// regaddr
addrbuffer[0] =
(uint8_t)(_address >> 8) & ~0x01; // set bottom bit low to write
// the 'actual' reg addr is the second byte then
addrbuffer[1] = (uint8_t)(_address & 0xFF);
// the address appears to be a byte longer
return _spidevice->write(buffer, len, addrbuffer, _addrwidth + 1);
}
if (_spiregtype == ADDRBIT8_HIGH_TOREAD) {
addrbuffer[0] &= ~0x80;
}
if (_spiregtype == ADDRBIT8_HIGH_TOWRITE) {
addrbuffer[0] |= 0x80;
}
if (_spiregtype == AD8_HIGH_TOREAD_AD7_HIGH_TOINC) {
addrbuffer[0] &= ~0x80;
addrbuffer[0] |= 0x40;
}
return _spidevice->write(buffer, len, addrbuffer, _addrwidth);
}
return false;
}
/*!
* @brief Write up to 4 bytes of data to the register location
* @param value Data to write
* @param numbytes How many bytes from 'value' to write
* @return True on successful write (only really useful for I2C as SPI is
* uncheckable)
*/
bool Adafruit_BusIO_Register::write(uint32_t value, uint8_t numbytes) {
if (numbytes == 0) {
numbytes = _width;
}
if (numbytes > 4) {
return false;
}
// store a copy
_cached = value;
for (int i = 0; i < numbytes; i++) {
if (_byteorder == LSBFIRST) {
_buffer[i] = value & 0xFF;
} else {
_buffer[numbytes - i - 1] = value & 0xFF;
}
value >>= 8;
}
return write(_buffer, numbytes);
}
/*!
* @brief Read data from the register location. This does not do any error
* checking!
* @return Returns 0xFFFFFFFF on failure, value otherwise
*/
uint32_t Adafruit_BusIO_Register::read(void) {
if (!read(_buffer, _width)) {
return -1;
}
uint32_t value = 0;
for (int i = 0; i < _width; i++) {
value <<= 8;
if (_byteorder == LSBFIRST) {
value |= _buffer[_width - i - 1];
} else {
value |= _buffer[i];
}
}
return value;
}
/*!
* @brief Read cached data from last time we wrote to this register
* @return Returns 0xFFFFFFFF on failure, value otherwise
*/
uint32_t Adafruit_BusIO_Register::readCached(void) { return _cached; }
/*!
* @brief Read a buffer of data from the register location
* @param buffer Pointer to data to read into
* @param len Number of bytes to read
* @return True on successful write (only really useful for I2C as SPI is
* uncheckable)
*/
bool Adafruit_BusIO_Register::read(uint8_t *buffer, uint8_t len) {
uint8_t addrbuffer[2] = {(uint8_t)(_address & 0xFF),
(uint8_t)(_address >> 8)};
if (_i2cdevice) {
return _i2cdevice->write_then_read(addrbuffer, _addrwidth, buffer, len);
}
if (_spidevice) {
if (_spiregtype == ADDRESSED_OPCODE_BIT0_LOW_TO_WRITE) {
// very special case!
// pass the special opcode address which we set as the high byte of the
// regaddr
addrbuffer[0] =
(uint8_t)(_address >> 8) | 0x01; // set bottom bit high to read
// the 'actual' reg addr is the second byte then
addrbuffer[1] = (uint8_t)(_address & 0xFF);
// the address appears to be a byte longer
return _spidevice->write_then_read(addrbuffer, _addrwidth + 1, buffer,
len);
}
if (_spiregtype == ADDRBIT8_HIGH_TOREAD) {
addrbuffer[0] |= 0x80;
}
if (_spiregtype == ADDRBIT8_HIGH_TOWRITE) {
addrbuffer[0] &= ~0x80;
}
if (_spiregtype == AD8_HIGH_TOREAD_AD7_HIGH_TOINC) {
addrbuffer[0] |= 0x80 | 0x40;
}
return _spidevice->write_then_read(addrbuffer, _addrwidth, buffer, len);
}
return false;
}
/*!
* @brief Read 2 bytes of data from the register location
* @param value Pointer to uint16_t variable to read into
* @return True on successful write (only really useful for I2C as SPI is
* uncheckable)
*/
bool Adafruit_BusIO_Register::read(uint16_t *value) {
if (!read(_buffer, 2)) {
return false;
}
if (_byteorder == LSBFIRST) {
*value = _buffer[1];
*value <<= 8;
*value |= _buffer[0];
} else {
*value = _buffer[0];
*value <<= 8;
*value |= _buffer[1];
}
return true;
}
/*!
* @brief Read 1 byte of data from the register location
* @param value Pointer to uint8_t variable to read into
* @return True on successful write (only really useful for I2C as SPI is
* uncheckable)
*/
bool Adafruit_BusIO_Register::read(uint8_t *value) {
if (!read(_buffer, 1)) {
return false;
}
*value = _buffer[0];
return true;
}
/*!
* @brief Pretty printer for this register
* @param s The Stream to print to, defaults to &Serial
*/
void Adafruit_BusIO_Register::print(Stream *s) {
uint32_t val = read();
s->print("0x");
s->print(val, HEX);
}
/*!
* @brief Pretty printer for this register
* @param s The Stream to print to, defaults to &Serial
*/
void Adafruit_BusIO_Register::println(Stream *s) {
print(s);
s->println();
}
/*!
* @brief Create a slice of the register that we can address without
* touching other bits
* @param reg The Adafruit_BusIO_Register which defines the bus/register
* @param bits The number of bits wide we are slicing
* @param shift The number of bits that our bit-slice is shifted from LSB
*/
Adafruit_BusIO_RegisterBits::Adafruit_BusIO_RegisterBits(
Adafruit_BusIO_Register *reg, uint8_t bits, uint8_t shift) {
_register = reg;
_bits = bits;
_shift = shift;
}
/*!
* @brief Read 4 bytes of data from the register
* @return data The 4 bytes to read
*/
uint32_t Adafruit_BusIO_RegisterBits::read(void) {
uint32_t val = _register->read();
val >>= _shift;
return val & ((1 << (_bits)) - 1);
}
/*!
* @brief Write 4 bytes of data to the register
* @param data The 4 bytes to write
* @return True on successful write (only really useful for I2C as SPI is
* uncheckable)
*/
bool Adafruit_BusIO_RegisterBits::write(uint32_t data) {
uint32_t val = _register->read();
// mask off the data before writing
uint32_t mask = (1 << (_bits)) - 1;
data &= mask;
mask <<= _shift;
val &= ~mask; // remove the current data at that spot
val |= data << _shift; // and add in the new data
return _register->write(val, _register->width());
}
/*!
* @brief The width of the register data, helpful for doing calculations
* @returns The data width used when initializing the register
*/
uint8_t Adafruit_BusIO_Register::width(void) { return _width; }
/*!
* @brief Set the default width of data
* @param width the default width of data read from register
*/
void Adafruit_BusIO_Register::setWidth(uint8_t width) { _width = width; }
/*!
* @brief Set register address
* @param address the address from register
*/
void Adafruit_BusIO_Register::setAddress(uint16_t address) {
_address = address;
}
/*!
* @brief Set the width of register address
* @param address_width the width for register address
*/
void Adafruit_BusIO_Register::setAddressWidth(uint16_t address_width) {
_addrwidth = address_width;
}
#endif // SPI exists