weatherstation/firmware/libraries/WiFi/extras/wifiHD/src/ard_tcp 2.c

988 lines
22 KiB
C
Raw Normal View History

2022-09-16 09:20:19 +02:00
/*
* ard_tcp.c
*
* Created on: May 27, 2010
* Author: mlf by Metodo2 srl
*/
//#define _APP_DEBUG_
#include "lwip/opt.h"
#include "lwip/mem.h"
#include "lwip/raw.h"
#include "lwip/icmp.h"
#include "lwip/netif.h"
#include "lwip/sys.h"
#include "lwip/sockets.h"
#include "lwip/inet.h"
#include "lwip/inet_chksum.h"
#include "lwip/tcp.h"
#include "lwip/udp.h"
#include "ard_tcp.h"
#include "ard_spi.h"
#include "timer.h"
#include "util.h"
#include "getopt.h"
#include "ard_utils.h"
#include "debug.h"
#include "trace.h"
unsigned int startTime = 0;
extern bool ifStatus;
static err_t tcp_data_sent(void *arg, struct tcp_pcb *pcb, u16_t len);
static void atcp_init_pend_flags(struct ttcp* _ttcp)
{
int i = 0;
for (; i<MAX_CLIENT_ACCEPTED; ++i)
{
if (_ttcp) _ttcp->pending_close[i] = false;
}
}
/**
* Clean up and free the ttcp structure
*/
static void ard_tcp_destroy(struct ttcp* ttcp) {
err_t err = ERR_OK;
DUMP_TCP_STATE(ttcp);
uint8_t sock = getSock(ttcp);
if (sock == -1)
WARN("ttcp already deallocated!\n");
freeAllTcpData(sock);
int i = 0;
for (; i<MAX_CLIENT_ACCEPTED; ++i)
{
if (ttcp->tpcb[i]) {
tcp_arg(ttcp->tpcb[i], NULL);
tcp_sent(ttcp->tpcb[i], NULL);
tcp_recv(ttcp->tpcb[i], NULL);
tcp_err(ttcp->tpcb[i], NULL);
//TEMPORAQARY
//err = tcp_close(ttcp->tpcb);
INFO_TCP("Closing tpcb: state:0x%x err:%d\n", ttcp->tpcb[i]->state, err);
}
}
if (ttcp->lpcb) {
tcp_arg(ttcp->lpcb, NULL);
tcp_accept(ttcp->lpcb, NULL);
err = tcp_close(ttcp->lpcb);
INFO_TCP("Closing lpcb: state:0x%x err:%d\n", ttcp->lpcb->state, err);
}
if (ttcp->upcb) {
udp_disconnect(ttcp->upcb);
udp_remove(ttcp->upcb);
}
FREE_PAYLOAD(ttcp);
free(ttcp);
}
/**
* Invoked when transfer is done or aborted (non-zero result).
*/
static void ard_tcp_done(struct ttcp* ttcp, int result) {
// if (result == 0)
// ard_tcp_print_stats(ttcp);
if (ttcp->done_cb)
ttcp->done_cb(ttcp->opaque, result);
ard_tcp_destroy(ttcp);
clearMapSockTcp(getSock(ttcp), GET_TCP_MODE(ttcp));
}
/**
* Only used in TCP mode.
* Will transmit a maximum of pbuf->tot_len bytes.
* Called upon connect and when there's space available in the TCP send window
*
*/
static err_t tcp_send_data_pcb(struct ttcp *ttcp, struct tcp_pcb *pcb) {
err_t err = ERR_OK;
uint32_t len;
GET_CLIENT_ID(ttcp, pcb);
len = ttcp->left[id];
ttcp->buff_sent[id] = 0;
if (len == 0) return ERR_MEM;
INFO_TCP_VER("left=%d len:%d\n", ttcp->left[id], len);
/* don't send more than we have in the payload */
if (len > ttcp->buflen)
len = ttcp->buflen;
/* We cannot send more data than space available in the send
buffer. */
if (len > tcp_sndbuf(pcb))
len = tcp_sndbuf(pcb);
IF_TCP(startTime = timer_get_ms());
err = tcp_write(pcb, ttcp->payload[id], len, TCP_WRITE_FLAG_COPY);
if (err != ERR_OK)
{
INFO_TCP("tcp_write failed %p state:%d len:%d err:%d\n",
pcb, pcb->state, len, err);
ttcp->buff_sent[id] = 0;
}else{
ttcp->buff_sent[id] = 1;
ttcp->left[id] -= len;
}
return err;
}
/**
* Only used in TCP mode.
*/
static err_t tcp_connect_cb(void *arg, struct tcp_pcb *tpcb, err_t err) {
struct ttcp* _ttcp = arg;
if (_ttcp == NULL) return ERR_ARG;
GET_CLIENT_ID(_ttcp, tpcb);
INFO_TCP("TTCP [%p-%p]: connect %d %d\n", _ttcp, tpcb, err, tpcb->state);
_connected = ( tpcb->state == ESTABLISHED) ? 1 : 0;
_ttcp->tcp_poll_retries[id] = 0;
_ttcp->start_time = timer_get_ms();
return ERR_OK;
}
static void cleanSockState_cb(void *ctx) {
struct ttcp* _ttcp = ctx;
if (_ttcp == NULL) return;
int sock = getSock(_ttcp);
if (sock != -1)
clearMapSockTcp(sock, GET_TCP_MODE(_ttcp));
INFO_TCP("TTCP [%p]: cleanSockState_cb %d\n", _ttcp, sock);
_connected = false;
}
/**
* Only used in TCP mode.
*/
static err_t close_conn_pcb(struct tcp_pcb* tpcb) {
err_t err = tcp_close(tpcb);
if (err== ERR_OK)
{
tcp_arg(tpcb, NULL);
tcp_sent(tpcb, NULL);
tcp_recv(tpcb, NULL);
}
INFO_TCP("Closing tpcb[%p]: state:0x%x err:%d\n", tpcb, tpcb->state, err);
return err;
}
static void atcp_conn_err_cb(void *arg, err_t err) {
struct ttcp* _ttcp = arg;
WARN("TTCP [%p]: connection error: %d currId:%d\n",
_ttcp, err, getCurrClientConnId());
if (ifStatus == false)
printk("Abort connection\n");
if (err == ERR_ABRT)
{
removeNewClientConn(_ttcp, GET_CURR_PCB(_ttcp));
FREE_PAYLOAD_ID(_ttcp, getCurrClientConnId());
}
}
static void atcp_conn_cli_err_cb(void *arg, err_t err) {
struct ttcp* _ttcp = arg;
if (_ttcp == NULL) return;
WARN("TTCP [%p]: connection error: %d arg:%p\n",
_ttcp, err, arg);
if (ifStatus == false)
printk("Abort connection\n");
if ((_ttcp)&&(err == ERR_ABRT))
{
WARN("TTCP [%p]: free memory\n", _ttcp);
cleanSockState_cb(_ttcp);
// TODO
FREE_PAYLOAD(_ttcp);
}
//atcp_init_pend_flags(_ttcp);
}
static err_t close_conn(struct ttcp *_ttcp, struct tcp_pcb* tpcb) {
if (_ttcp == NULL) return ERR_MEM;
GET_CLIENT_ID(_ttcp, tpcb);
err_t err = close_conn_pcb(_ttcp->tpcb[id]);
if (err == ERR_MEM)
{
WARN("Cannot close id:%d-%p put pending\n", id, _ttcp->tpcb[id]);
_ttcp->pending_close[id] = true;
}
else{
_ttcp->pending_close[id] = false;
removeNewClientConn(_ttcp, _ttcp->tpcb[id]);
FREE_PAYLOAD_ID(_ttcp, id);
INFO_TCP("----------------------\n");
}
return err;
}
void closeConnections()
{
int ii=0;
for (; ii<MAX_MODE_NUM; ii++)
{
int i = 0;
for (; i<MAX_SOCK_NUM; i++)
{
void* p = getTTCP(i, ii);
if (p)
{
ttcp_t* _ttcp = (ttcp_t* )p;
if (_ttcp->udp == TCP_MODE)
{
ard_tcp_destroy(_ttcp);
clearMapSockTcp(getSock(_ttcp), GET_TCP_MODE(_ttcp));
}
}
}
}
}
/**
* Only used in TCP mode.
*/
static err_t atcp_recv_cb(void *arg, struct tcp_pcb *pcb, struct pbuf *p,
err_t err) {
struct ttcp* ttcp = arg;
if (err == ERR_OK && p != NULL) {
DATA_LED_ON();
/* for print_stats() */
ttcp->recved += p->tot_len;
if ((ttcp->verbose)||(verboseDebug & INFO_TCP_FLAG)) {
INFO_TCP("len:%d\n",p->tot_len);
DUMP_TCP(p->payload, p->tot_len);
ttcp->print_cnt++;
}
uint8_t* pBufferStore = insert_pBuf(p, ttcp->sock, (void*) pcb);
INFO_TCP("sock:%d pcb:%p pbuf:%p err:%d bufStore:%p len:%d\n",
ttcp->sock, pcb, p, err, pBufferStore, p->tot_len);
pbuf_free(p);
DATA_LED_OFF();
}
/* p will be NULL when remote end is done */
if (err == ERR_OK && p == NULL) {
INFO_TCP("atcp_recv_cb p=NULL on sock:%d pcb:%p\n", ttcp->sock, pcb);
close_conn(ttcp, pcb);
}
if (err!=ERR_OK)
WARN("err=%d p=%p\n", err, p);
return ERR_OK;
}
void ack_recved(void* pcb, int len) {
// Comment the call because it is activated on atcp_recv_cb
INFO_TCP("Received %p len:%d\n", pcb, len);
tcp_recved(pcb, len);
}
static err_t atcp_poll(void *arg, struct tcp_pcb *pcb) {
struct ttcp* _ttcp = arg;
if (_ttcp == NULL) return ERR_ARG;
GET_CLIENT_ID(_ttcp, pcb);
if (_ttcp->left[id]>0)
++_ttcp->tcp_poll_retries[id];
if (_ttcp->tcp_poll_retries[id] > 4) {
WARN("ARD TCP [%p] arg=%p retries=%d abort\n",
pcb, arg, _ttcp->tcp_poll_retries[id]);
_ttcp->tcp_poll_retries[id] = 0;
tcp_abort(pcb);
_ttcp->pending_close[id] = false;
return ERR_ABRT;
}
if (pcb)
INFO_TCP_POLL("keepAliveCnt:%d keep_idle:%d persist_cnt:%d\n",
pcb->keep_cnt_sent, pcb->keep_idle, pcb->persist_cnt);
if (_ttcp->left[id] > 0)
INFO_TCP("ARD TCP [%p-%p] arg=%p retries=%d pend.close:%d len:%d\n",
(_ttcp)?GET_FIRST_CLIENT_TCP(_ttcp):0, pcb, arg,
_ttcp->tcp_poll_retries[id], _ttcp->pending_close[id], (_ttcp)?_ttcp->left[id]:0);
tcp_send_data_pcb(_ttcp, pcb);
if (_ttcp->pending_close[id])
{
err_t err = ERR_OK;
if (id >=0){
err = tcp_close(pcb);
if (err == ERR_MEM)
{
_ttcp->pending_close[id] = true;
}
else
{
_ttcp->pending_close[id] = false;
removeNewClientConn(_ttcp, _ttcp->tpcb[id]);
FREE_PAYLOAD_ID(_ttcp, id);
INFO_TCP("----------------------\n");
}
}
INFO_TCP("ARD TCP [%p-%p] try to close pending:%d err:%d id:%d\n", pcb,
(_ttcp)?GET_FIRST_CLIENT_TCP(_ttcp):0, _ttcp->pending_close[id], err, id);
}
return ERR_OK;
}
static err_t atcp_poll_conn(void *arg, struct tcp_pcb *pcb) {
struct ttcp* _ttcp = arg;
if (_ttcp == NULL) return ERR_ARG;
GET_CLIENT_ID(_ttcp, pcb)
INFO_TCP_POLL("ARD TCP [%p-%p] arg=%p retries=%d pend.close:%d conn:%d\n",
(_ttcp)?GET_FIRST_CLIENT_TCP(_ttcp):0, pcb, arg,
_ttcp->tcp_poll_retries[id], _ttcp->pending_close[id], _connected);
if (id != NO_VALID_ID)
{
if (_ttcp->pending_close[id])
++(_ttcp->tcp_poll_retries[id]);
}
if (_ttcp->tcp_poll_retries[id] > 8) {
WARN("ARD TCP [%p-%p] arg=%p retries=%d\n",
pcb, GET_FIRST_CLIENT_TCP(_ttcp), arg, _ttcp->tcp_poll_retries[id]);
_ttcp->tcp_poll_retries[id] = 0;
tcp_abort(pcb);
return ERR_ABRT;
}
if ((_ttcp)&&(_connected)) tcp_send_data_pcb(_ttcp, pcb);
if ((id != NO_VALID_ID) && (_ttcp->pending_close[id]))
{
err_t err = tcp_close(pcb);
if (err == ERR_MEM)
{
_ttcp->pending_close[id] = true;
}
else
{
cleanSockState_cb(_ttcp);
FREE_PAYLOAD_ID(_ttcp, id);
_ttcp->pending_close[id] = false;
}
INFO_TCP("ARD TCP [%p-%p] try to close pending:%d\n", pcb, (_ttcp)?GET_FIRST_CLIENT_TCP(_ttcp):0, _ttcp->pending_close[id]);
}
return ERR_OK;
}
int8_t currConnId = 0;
int8_t getCurrClientConnId() { return currConnId;}
int8_t getNewClientConnId(struct ttcp* _ttcp, struct tcp_pcb *newpcb)
{
if (_ttcp != NULL){
int i = 0;
for (; i<MAX_CLIENT_ACCEPTED; ++i)
{
int idx = GET_IDX_CONN(i);
if (_ttcp->tpcb[idx] == newpcb)
{
INFO_TCP_VER("ttcp:%p id=%d, tpcb=%p\n", _ttcp, idx, newpcb);
return idx;
}
}
}
WARN("No Valid Id for ttcp:%p pcb:%p\n", _ttcp, newpcb);
return NO_VALID_ID;
}
struct tcp_pcb * getFirstClient(struct ttcp* _ttcp, bool verbose)
{
if (_ttcp != NULL){
int i = 0;
for (; i<MAX_CLIENT_ACCEPTED; ++i)
{
int idx = GET_IDX_CONN(i);
if (_ttcp->tpcb[idx] != NULL)
{
if (verbose) INFO_TCP("ttcp:%p id=%d, tpcb=%p\n", _ttcp, idx, _ttcp->tpcb[idx]);
currConnId = idx;
return _ttcp->tpcb[idx];
}
}
}
if (verbose) WARN("No Valid client for ttcp:%p\n", _ttcp);
return NULL;
}
int8_t setNewClientConn(struct ttcp* _ttcp, struct tcp_pcb *newpcb, uint8_t id)
{
if ((_ttcp != NULL)&&(id>=0)&&(id<MAX_CLIENT_ACCEPTED)){
INFO_TCP("ttcp:%p id=%d, tpcb=%p\n", _ttcp, id, newpcb);
_ttcp->tpcb[id] = newpcb;
return id;
}
return NO_VALID_ID;
}
int8_t insertNewClientConn(struct ttcp* _ttcp, struct tcp_pcb *newpcb)
{
if (_ttcp != NULL){
int i = 0;
for (; i<MAX_CLIENT_ACCEPTED; ++i)
{
int idx = GET_IDX_CONN(i);
if ((_ttcp->tpcb[idx] == NULL)||(_ttcp->tpcb[idx] == newpcb))
{
INFO_TCP("ttcp:%p id=%d, tpcb=%p\n", _ttcp, idx, newpcb);
_ttcp->tpcb[idx] = newpcb;
return idx;
}
}
}
return NO_VALID_ID;
}
int8_t removeNewClientConn(struct ttcp* _ttcp, struct tcp_pcb *newpcb)
{
if (_ttcp != NULL){
int i = 0;
for (; i<MAX_CLIENT_ACCEPTED; ++i)
{
int idx = GET_IDX_CONN(i);
if (_ttcp->tpcb[idx] == newpcb)
{
INFO_TCP("ttcp:%p id=%d, tpcb=%p\n", _ttcp, idx, newpcb);
_ttcp->tpcb[idx] = NULL;
return idx;
}
}
}
return NO_VALID_ID;
}
bool cleanNewClientConn(struct ttcp* _ttcp)
{
if (_ttcp != NULL){
int i = 0;
for (; i<MAX_CLIENT_ACCEPTED; ++i)
_ttcp->tpcb[i] = NULL;
return true;
}
return false;
}
/**
* Only used in TCP mode.
*/
static err_t atcp_accept_cb(void *arg, struct tcp_pcb *newpcb, err_t err) {
struct ttcp* _ttcp = arg;
if (_ttcp == NULL) return ERR_ARG;
INFO_TCP("ARD TCP [%p]: accept new [%p]\n", _ttcp, newpcb);
INFO_TCP("local:%d remote:%d state:%d\n", newpcb->local_port, newpcb->remote_port, newpcb->state);
int8_t id = insertNewClientConn(_ttcp, newpcb);
ASSERT((_ttcp->payload[id]==NULL), "payload not freed!");
_ttcp->payload[id] = malloc(_ttcp->buflen);
INFO_TCP("Alloc payload %d-%p\n", id, _ttcp->payload[id]);
if (_ttcp->payload[id] == NULL) {
WARN("TTCP [%p]: could not allocate payload\n", _ttcp);
return -1;
}
tcp_arg(_ttcp->tpcb[id], _ttcp);
tcp_recv(_ttcp->tpcb[id], atcp_recv_cb);
tcp_err(_ttcp->tpcb[id], atcp_conn_err_cb);
tcp_poll(_ttcp->tpcb[id], atcp_poll, 4);
// Copy the pointer to ttcp also to TRANSMIT mode for the clients connected to the server
int _sock = getSock(_ttcp);
if ((_sock != -1)&&(IS_VALID_SOCK(_sock)))
setMapSockMode(_sock, _ttcp, TTCP_MODE_TRANSMIT);
_ttcp->start_time = timer_get_ms();
return ERR_OK;
}
/**
* Start TCP transfer.
*/
static int atcp_start(struct ttcp* ttcp) {
err_t err = ERR_OK;
struct tcp_pcb * p = tcp_new();
if (p == NULL) {
WARN("TTCP [%p]: could not allocate pcb\n", ttcp);
return -1;
}
currConnId = 0;
tcp_arg(p, ttcp);
atcp_init_pend_flags(ttcp);
if (ttcp->mode == TTCP_MODE_TRANSMIT) {
int8_t id = insertNewClientConn(ttcp, p);
ttcp->payload[id] = malloc(ttcp->buflen);
INFO_TCP("Alloc payload %d-%p\n", id, ttcp->payload[id]);
if (ttcp->payload[id] == NULL) {
WARN("TTCP [%p]: could not allocate payload\n", ttcp);
return -1;
}
struct tcp_pcb * pcb = p;
tcp_err(pcb, atcp_conn_cli_err_cb);
tcp_recv(pcb, atcp_recv_cb);
tcp_sent(pcb, tcp_data_sent);
tcp_poll(pcb, atcp_poll_conn, 4);
_connected = false;
INFO_TCP("[tpcb]-%p payload:%p\n", pcb, ttcp->payload[id]);
DUMP_TCP_STATE(ttcp);
if (tcp_connect(pcb, &ttcp->addr, ttcp->port, tcp_connect_cb)
!= ERR_OK) {
WARN("TTCP [%p]: tcp connect failed\n", ttcp);
return -1;
}
} else {
INFO_TCP("BEFORE BIND ttcp:%p lpcb:%p pcb:%p\n", ttcp, ttcp->lpcb, GET_FIRST_CLIENT_TCP(ttcp));
err = tcp_bind(p, IP_ADDR_ANY, ttcp->port);
if (err != ERR_OK){
WARN("TTCP [%p]: bind failed err=%d Port already used\n", ttcp, err);
return -1;
}
ttcp->lpcb = tcp_listen(p);
if (ttcp->lpcb == NULL) {
WARN("TTCP [%p]: listen failed\n", ttcp);
return -1;
}
DUMP_TCP_STATE(ttcp);
tcp_accept(ttcp->lpcb, atcp_accept_cb);
}
return 0;
}
/**
* Only used in UDP mode. Will finalize the ttcp process when an end marker
* is seen.
*/
static void audp_recv_cb(void *arg, struct udp_pcb *upcb, struct pbuf *p,
struct ip_addr *addr, u16_t port) {
struct ttcp* ttcp = arg;
/* for print_stats() */
ttcp->recved += p->tot_len;
DUMP(p->payload,p->tot_len);
if (ttcp->verbose) {
printk(".");
if (ttcp->print_cnt % 80 == 0)
printk("\n");
ttcp->print_cnt++;
}
INFO_TCP("UDP Insert %p sock:%d addr:%s port:%d\n", p, ttcp->sock,
ip2str(*addr), port);
insert_pBuf(p, ttcp->sock, (void*) upcb);
setRemoteClient(ttcp->sock, addr->addr, port);
pbuf_free(p);
}
/**
* Start UDP transfer.
*/
static int udp_start(struct ttcp* ttcp) {
err_t err = ERR_OK;
ttcp->udp_end_marker_left = 5;
ttcp->upcb = udp_new();
if (ttcp->upcb == NULL) {
WARN("TTCP [%p]: could not allocate pcb\n", ttcp);
return -1;
}
INFO_TCP("%s, upcb:%p %s:%d\n", __FUNCTION__, ttcp->upcb, ip2str(ttcp->addr), ttcp->port);
if (ttcp->mode == TTCP_MODE_TRANSMIT) {
if (udp_connect(ttcp->upcb, &(ttcp->addr), ttcp->port) != ERR_OK) {
WARN("TTCP [%p]: udp connect failed\n", ttcp);
return -1;
}
udp_recv(ttcp->upcb, audp_recv_cb, ttcp);
} else {
/* bind to any IP address on port specified */
err = udp_bind(ttcp->upcb, IP_ADDR_ANY, ttcp->port);
if (err!= ERR_OK) {
WARN("TTCP [%p]: bind failed err=%d Port already used\n", ttcp, err);
return -1;
}
// clear remote client data
setRemoteClient(ttcp->sock, 0, 0);
udp_recv(ttcp->upcb, audp_recv_cb, ttcp);
}
INFO_TCP("%s, loc:0x%x-%d rem:0x%x-%d\n", __FUNCTION__,
ttcp->upcb->local_ip.addr, ttcp->upcb->local_port,
ttcp->upcb->remote_ip.addr, ttcp->upcb->remote_port);
return 0;
}
/**
* Start a new ttcp transfer. It should be possible to call this function
* multiple times in order to get multiple ttcp streams. done_cb() will be
* invoked upon completion.
*
*/
int ard_tcp_start(struct ip_addr addr, uint16_t port, void *opaque,
ard_tcp_done_cb_t *done_cb, int mode, uint16_t nbuf, uint16_t buflen,
int udp, int verbose, uint8_t sock, void** _ttcp) {
struct ttcp* ttcp;
int status;
if (mode != TTCP_MODE_TRANSMIT && mode != TTCP_MODE_RECEIVE) {
WARN("TTCP [-]: invalid mode\n");
return -1;
}
if (nbuf == 0) {
WARN("TTCP [-]: invalid nbuf\n");
return -1;
}
if (buflen == 0) {
WARN("TTCP [-]: invalid buflen\n");
return -1;
}
ttcp = calloc(1, sizeof(struct ttcp));
if (ttcp == NULL) {
WARN("TTCP [-]: could not allocate memory for ttcp\n");
return -1;
}
ttcp->addr = addr;
ttcp->port = port;
ttcp->nbuf = nbuf;
ttcp->mode = mode;
ttcp->done_cb = done_cb;
ttcp->opaque = opaque;
ttcp->udp = udp;
ttcp->verbose = verbose;
ttcp->buflen = buflen;
cleanNewClientConn(ttcp);
if (ttcp->udp)
status = udp_start(ttcp);
else
status = atcp_start(ttcp);
if (status) {
WARN("Start server FAILED!\n");
goto fail;
}
INFO_TCP("TTCP [%p-%p]: nbuf=%d, buflen=%d, port=%d (%s/%s)\n", ttcp,
((ttcp->udp==1)?(void*)ttcp->upcb:GET_FIRST_CLIENT_TCP(ttcp)), ttcp->nbuf, ttcp->buflen,
ttcp->port, ProtMode2Str(ttcp->udp), Mode2Str(ttcp->mode));
*_ttcp = (void*) ttcp;
ttcp->sock = sock;
return 0;
fail: ard_tcp_destroy(ttcp);
return -1;
}
void ard_tcp_stop(void* ttcp) {
struct ttcp* _ttcp = (struct ttcp*) ttcp;
if (_ttcp == NULL)
{
WARN("ttcp = NULL!\n");
return;
}
if (_ttcp->mode == TTCP_MODE_TRANSMIT) {
int i = getCurrClientConnId();
ard_tcp_destroy(_ttcp);
clearMapSockTcp(getSock(_ttcp), GET_TCP_MODE(_ttcp));
_ttcp->tcp_poll_retries[i] = 0;
}else{
DUMP_TCP_STATE(_ttcp);
int i = getCurrClientConnId();
if ((_ttcp)&&(_ttcp->tpcb[i])&&(_ttcp->tpcb[i]->state!=LAST_ACK)&&(_ttcp->tpcb[i]->state!=CLOSED))
{
// Flush all the data
err_t err=tcp_output(_ttcp->tpcb[i]);
INFO_TCP("flush data: tpcb:%p err:%d\n", _ttcp->tpcb[i], err);
// if any socket cannot be close stop the close connection
close_conn(_ttcp, _ttcp->tpcb[i]);
}
}
}
uint8_t getStateTcp(void* p, bool client) {
struct ttcp* _ttcp = (struct ttcp*) p;
if (ifStatus == false)
return CLOSED;
struct tcp_pcb * pcb = GET_FIRST_CLIENT_TCP_NV(_ttcp);
if ((_ttcp != NULL) && ((pcb != NULL) || (client==0))) {
IF_SPI_POLL(DUMP_TCP_STATE(_ttcp));
if (client)
{
if ((pcb->state != ESTABLISHED)&&(pcb->state != CLOSED))
DUMP_TCP_STATE(_ttcp);
return pcb->state;
}
else
{
return _ttcp->lpcb->state;
}
} else {
WARN_POLL("TCP not initialized ttcp:%p tpcb:%p lpcb:%p\n",
_ttcp, ((_ttcp)?pcb:0), ((_ttcp)?_ttcp->lpcb:0));
}
return CLOSED;
}
uint8_t getModeTcp(void* p) {
struct ttcp* _ttcp = (struct ttcp*) p;
if (_ttcp != NULL)
return _ttcp->mode;
return 0;
}
uint8_t isDataSent(void* p) {
struct ttcp *_ttcp = (struct ttcp *)p;
int8_t id = getCurrClientConnId();
if ((_ttcp)&&(!_ttcp->buff_sent[id]))
{
return 0;
}
return 1;
}
static err_t tcp_data_sent(void *arg, struct tcp_pcb *pcb, u16_t len) {
struct ttcp *_ttcp;
LWIP_UNUSED_ARG(len);
_ttcp = arg;
if (_ttcp == NULL) return ERR_ARG;
GET_CLIENT_ID(_ttcp, pcb);
_ttcp->tcp_poll_retries[id] = 0;
_ttcp->buff_sent[id] = 1;
INFO_TCP("Packet sent pcb:%p len:%d dur:%d left:%d\n", pcb, len, timer_get_ms() - startTime,
(_ttcp)?(_ttcp->left[id]):0);
if ((_ttcp)&&(_ttcp->left[id] > 0)) {
tcp_send_data_pcb(_ttcp, pcb);
}
return ERR_OK;
}
int sendTcpData(void* p, uint8_t* buf, uint16_t len)
{
struct ttcp* _ttcp = (struct ttcp*) p;
if (_ttcp==NULL)
{
WARN("ttcp == NULL!\n");
return WL_FAILURE;
}
struct tcp_pcb * pcb = GET_FIRST_CLIENT_TCP_NV(_ttcp);
GET_CLIENT_ID(_ttcp, pcb);
INFO_TCP_VER("ttcp:%p pcb:%p buf:%p len:%d\n", _ttcp, pcb, buf, len);
DUMP_TCP(buf,len);
IF_TCP_VER(DUMP_TCP_STATE(_ttcp));
if ((_ttcp != NULL) && (pcb != NULL) &&
(buf != NULL) && (len != 0) && (_ttcp->payload[id] != NULL)) {
if (pcb->state == ESTABLISHED || pcb->state == CLOSE_WAIT ||
pcb->state == SYN_SENT || pcb->state == SYN_RCVD) {
memcpy(_ttcp->payload[id], buf, len);
_ttcp->payload[id][len]='\0';
INFO_TCP_VER("'%s'\n", _ttcp->payload[id]);
_ttcp->left[id] = len;
tcp_sent(pcb, tcp_data_sent);
tcp_send_data_pcb(_ttcp, pcb);
return WL_SUCCESS;
}
}
//printk("Write failure _ttcp=%p _ttcp->tpcb=%p buf=%p len=%d\n", _ttcp, _ttcp->tpcb, buf, len);
return WL_FAILURE;
}
int sendUdpData(void* ttcp, uint8_t* buf, uint16_t len) {
struct ttcp* _ttcp = (struct ttcp*) ttcp;
if ((_ttcp != NULL) && (buf != NULL) && (len != 0))
{
INFO_TCP("buf:%p len:%d\n", buf, len);
DUMP_TCP(buf,len);
}else{
return WL_FAILURE;
}
struct pbuf* p = pbuf_alloc(PBUF_TRANSPORT, len, PBUF_RAM);
if (p == NULL) {
WARN("TTCP [%p]: could not allocate pbuf\n", ttcp);
return WL_FAILURE;
}
memcpy(p->payload, buf, len);
if (udp_send(_ttcp->upcb, p) != ERR_OK) {
WARN("TTCP [%p]: udp_send() failed\n", _ttcp);
pbuf_free(p);
return WL_FAILURE;
}
pbuf_free(p);
return WL_SUCCESS;
}
char
usage[] =
"Usage: ttcp -t/-r [-options] host\n\
-l length of bufs written to network (default 1024)\n\
-n number of bufs written to network (default 1024)\n\
-p port number to send to (default 2000)\n\
-u udp\n\
-v verbose\n";
/**
*
*/
cmd_state_t cmd_ttcp(int argc, char* argv[], void* ctx) {
int c;
int mode = TTCP_MODE_TRANSMIT;
int verbose = 0;
uint16_t buflen = 1024;
uint16_t nbuf = 1024;
uint16_t port = 2000;
int udp = 0;
struct ip_addr addr = { 0 };
optind = 1;
while ((c = getopt(argc, argv, "utrl:n:p:v")) != -1) {
switch (c) {
case 't':
mode = TTCP_MODE_TRANSMIT;
break;
case 'r':
mode = TTCP_MODE_RECEIVE;
break;
case 'l':
buflen = atoi(optarg);
break;
case 'v':
verbose = 1;
break;
case 'n':
nbuf = atoi(optarg);
break;
case 'u':
udp = 1;
break;
case 'p':
port = atoi(optarg);
break;
}
}
if (mode == TTCP_MODE_TRANSMIT) {
if (optind >= argc) {
printk("%s", usage);
return CMD_DONE;
}
addr = str2ip(argv[optind]);
if (!addr.addr) {
printk("%s", usage);
return CMD_DONE;
}
}
void* _ttcp = NULL;
if (ard_tcp_start(addr, port, NULL, NULL, mode, nbuf, buflen, udp, verbose,
0, &_ttcp))
return CMD_DONE;
return CMD_DONE;
}
#if 0
#include "lwip/sockets.h"
void testlwip()
{
int Sock;
fd_set fdsetR;
FD_ZERO(&fdsetR);
FD_SET(Sock, &fdsetR);
fd_set fdsetE = fdsetR;
int rc;
const int cMillies = 10000;
struct timeval timeout;
timeout.tv_sec = cMillies / 1000;
timeout.tv_usec = (cMillies % 1000) * 1000;
//rc = lwip_select(Sock + 1, &fdsetR, NULL, &fdsetE, &timeout);
}
#endif