weatherstation/firmware/libraries/WiFi/extras/wifiHD/src/ard_spi.c

1970 lines
51 KiB
C
Raw Normal View History

/*
* ard_spi.c
*
* Created on: May 27, 2010
* Author: mlf by Metodo2 srl
*/
//#define _APP_DEBUG_
#include <avr32/io.h>
#include "board.h"
#include "gpio.h"
#include "usart.h"
#include "ard_spi.h"
#include "ard_tcp.h"
#include "wifi_spi.h"
#include "wl_cm.h"
#include "ard_utils.h"
#include "intc.h"
#include "spi.h"
#include "debug.h"
#include "delay.h"
#include "eic.h"
#include "timer.h"
#include "lwip/dns.h"
#include <board_init.h>
#include "util.h"
#include "lwip/udp.h"
#include "lwip_setup.h"
extern const char* fwVersion;
/*! \name USART Settings
*/
//! @{
#if BOARD == EVK1105
# define ARD_USART_SPI (&AVR32_USART1)
# define ARD_USART_SPI_SCK_PIN AVR32_USART1_CLK_0_PIN
# define ARD_USART_SPI_SCK_FUNCTION AVR32_USART1_CLK_0_FUNCTION
# define ARD_USART_SPI_MISO_PIN AVR32_USART1_TXD_0_0_PIN
# define ARD_USART_SPI_MISO_FUNCTION AVR32_USART1_TXD_0_0_FUNCTION
# define ARD_USART_SPI_MOSI_PIN AVR32_USART1_RXD_0_0_PIN
# define ARD_USART_SPI_MOSI_FUNCTION AVR32_USART1_RXD_0_0_FUNCTION
# define ARD_USART_SPI_NSS_PIN AVR32_USART1_CTS_0_0_PIN
# define ARD_USART_SPI_NSS_FUNCTION AVR32_USART1_CTS_0_0_FUNCTION
# define ARD_USART_SPI_IRQ AVR32_USART1_IRQ
#endif
#if BOARD == ARDUINO
# define ARD_SPI (&AVR32_SPI0)
#define EXT_INT_PIN_LINE1 AVR32_EIC_EXTINT_5_PIN
#define EXT_INT_FUNCTION_LINE1 AVR32_EIC_EXTINT_5_FUNCTION
#define EXT_INT_LINE1 EXT_INT5
#define EXT_INT_IRQ_LINE1 AVR32_EIC_IRQ_5
#define EXT_INT_NB_LINES 1
#endif
/* These defines should be adjusted to match the application */
/*! \brief CPU core speed in Hz */
#define CPUHZ 60000000
/*! \brief Number of bytes in the receive buffer when operating in slave mode */
#define BUFFERSIZE 64
/*! \brief A adjustable delay avoiding multiple requests on the switches */
//#define TIMEOUT 150000
#define TIMEOUT CPUHZ/200
/*! \brief Number of bits in each SPI package*/
#define SPI_BITS 8
/*! \brief SPI slave speed in Hz */
#define SPI_SLAVE_SPEED 1000000
#ifndef CMD_MAX_LEN
#define CMD_MAX_LEN 1024
#endif
#ifndef REPLY_MAX_LEN
#define REPLY_MAX_LEN 1024
#endif
#define _BUFFERSIZE 100
extern void tcp_debug_print_pcbs(void);
extern bool ifStatus;
extern bool scanNetCompleted;
static char buf[CMD_MAX_LEN];
static char reply[REPLY_MAX_LEN];
static uint16_t cmdCorr = 0;
static uint16_t count = 0;
static uint16_t replyCount = 0;
static cmd_spi_state_t state = SPI_CMD_IDLE;
int receivedChars = 0;
static uint8_t _receiveBuffer[_BUFFERSIZE];
bool startReply = false;
bool end_write = false; //TODO only for debug
// Signal indicating a new command is coming from SPI interface
static volatile Bool startRecvCmdSignal = FALSE;
#define MAX_CMD_NUM 36
typedef struct sCmd_spi_list{
cmd_spi_cb_t cb;
char cmd_id;
cmd_spi_rcb_t reply_cb;
void* ctx;
char flags;
}tCmd_spi_list;
static tCmd_spi_list cmd_spi_list[MAX_CMD_NUM] = { {0} };
#ifdef _SPI_STATS_
typedef struct sStatSpi
{
int timeoutIntErr;
int timeoutErr;
int txErr;
int rxErr;
int wrongFrame;
int frameDisalign;
int overrideFrame;
int lastCmd;
int lastError;
unsigned long status;
}tStatSpi;
tStatSpi statSpi = {0};
void initStatSpi()
{
statSpi.lastCmd = 0;
statSpi.lastError = 0;
statSpi.status= 0;
statSpi.txErr = 0;
statSpi.rxErr = 0;
statSpi.timeoutErr= 0;
statSpi.timeoutIntErr= 0;
statSpi.wrongFrame = 0;
statSpi.frameDisalign = 0;
statSpi.overrideFrame = 0;
}
void printStatSpi()
{
printk("totSpiCmds\t: 0x%x\n", cmdCorr);
printk("lastCmd \t: 0x%x\n", statSpi.lastCmd);
printk("lastErr \t: 0x%x\n", statSpi.lastError);
printk("spiStatus\t: 0x%X\n", statSpi.status);
printk("spiTxErr \t: 0x%x\n", statSpi.txErr);
printk("spiRxErr \t: 0x%x\n", statSpi.rxErr);
printk("spiTmoErr\t: 0x%x\n", statSpi.timeoutErr);
printk("spiTmoIntErr\t: 0x%x\n", statSpi.timeoutIntErr);
printk("wrongFrame\t: 0x%x\n", statSpi.wrongFrame);
printk("disalFrame\t: 0x%x\n", statSpi.frameDisalign);
printk("overrideFrame\t: 0x%x\n", statSpi.overrideFrame);
}
cmd_state_t
cmd_statSpi(int argc, char* argv[], void* ctx)
{
printStatSpi();
return CMD_DONE;
}
cmd_state_t
cmd_resetStatSpi(int argc, char* argv[], void* ctx)
{
initStatSpi();
return CMD_DONE;
}
#endif
#define ARRAY_SIZE(a) sizeof(a) / sizeof(a[0])
#define RETURN_ERR(e) return (e==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
#define RESET_USART_CSR(usart) usart->cr = AVR32_USART_CR_RSTSTA_MASK;
int result = WL_CONNECT_FAILED; //Store the result of the last operation
void* mapSockTCP[MAX_SOCK_NUM][MAX_MODE_NUM];
//Udp RemoteIp and remote Port
static tRemoteClient remoteClients[MAX_SOCK_NUM] = {{0,0}};
void setRemoteClient(uint16_t sock, uint32_t _ipaddr, uint16_t _port)
{
if (sock < MAX_SOCK_NUM)
{
remoteClients[sock].ipaddr = _ipaddr;
remoteClients[sock].port = _port;
}
}
tRemoteClient* getRemoteClient(uint16_t sock)
{
if (sock < MAX_SOCK_NUM)
{
return &remoteClients[sock];
}
return NULL;
}
struct netif* ard_netif = NULL;
// Network list retrived in the last scanNetwork
static struct wl_network_list_t network_list = { 0 };
struct ip_addr _hostIpAddr;
static bool hostIpAddrFound = false;
void* getTTCP(uint8_t sock, uint8_t mode)
{
if (sock < MAX_SOCK_NUM)
return mapSockTCP[sock][mode];
return NULL;
}
int getSock(void * _ttcp)
{
if (_ttcp != NULL)
{
int i = 0;
for (; i<MAX_SOCK_NUM; i++)
{
if (_ttcp == mapSockTCP[i][GET_TCP_MODE(_ttcp)])
return i;
}
}
return -1;
}
void setMapSockMode(uint8_t sock, void* _ttcp, uint8_t _tcp_mode)
{
if ((IS_VALID_SOCK(sock))&&(_ttcp!=NULL))
mapSockTCP[sock][_tcp_mode]=_ttcp;
INFO_TCP("Map [%d, %p, %s]\n", sock, _ttcp, Mode2Str(_tcp_mode));
}
void setMapSock(uint8_t sock, void* _ttcp)
{
setMapSockMode(sock, _ttcp, GET_TCP_MODE(_ttcp));
}
void clearMapSockTcp(uint8_t sock, uint8_t mode)
{
if (sock < MAX_SOCK_NUM)
{
//printk("UnMap [%d, %p]\n", sock, mapSockTCP[sock]);
mapSockTCP[sock][mode] = NULL;
}
}
void initMapSockTcp()
{
memset(mapSockTCP, 0, sizeof(mapSockTCP));
}
#if 0
/**
* Calculate bitrate based on number of bytes transmitted and elapsed time
*/
static void ard_tcp_print_stats(struct ttcp *ttcp) {
uint32_t ms = timer_get_ms() - ttcp->start_time;
uint32_t bytes = ttcp->mode == TTCP_MODE_TRANSMIT ? ttcp->nbuf
* ttcp->buflen : ttcp->recved;
if (ttcp->verbose)
printk("\n");
printk("TTCP [%p]: %d bytes processed, %d.%d KB/s (%s/%s)\n", ttcp, bytes,
bytes / ms, bytes % ms, ProtMode2Str(ttcp->udp),
Mode2Str(ttcp->mode));
}
#endif
void showTTCPstatus()
{
printk("IF status: %s\n", (ifStatus) ? "UP":"DOWN");
printk("CONN status: %s\n", (_connected) ? "UP":"DOWN");
int i = 0;
for (; i<MAX_SOCK_NUM; i++)
{
int ii=0;
for (; ii<MAX_MODE_NUM; ii++)
{
void* p = getTTCP(i, ii);
if (p)
{
ttcp_t* _ttcp = (ttcp_t* )p;
printk("Socket n.:%d(%d) [0x%x] %s %s addr:%s port:%d\n", i, ii, _ttcp,
ProtMode2Str(_ttcp->udp), Mode2Str(_ttcp->mode), ip2str(_ttcp->addr), _ttcp->port);
if (_ttcp->udp == TCP_MODE)
{
int j = 0;
for (; j<MAX_CLIENT_ACCEPTED; ++j)
{
if (_ttcp->tpcb[j]){
printk("[%d tpcp-%p]-Status:%d\n", j, _ttcp->tpcb[j], _ttcp->tpcb[j]->state);
}
}
if (_ttcp->lpcb){
printk("[tlcp-%p]-Status:%d\n", _ttcp->lpcb, _ttcp->lpcb->state);
}
}else{
if (_ttcp->upcb){
struct ip_addr loc = _ttcp->upcb->local_ip;
printk("[upcp-%p] flags:0x%x local:%s[0x%x]-%d\n",
_ttcp->upcb, _ttcp->upcb->flags,
ip2str(loc), loc, _ttcp->upcb->local_port);
tRemoteClient remote = {0,0};;
getRemoteData(i, ii, &remote);
struct ip_addr ipaddr = { remote.ipaddr };
printk("remote:%s(0x%x)-%d\n", ip2str(ipaddr), remote.ipaddr, remote.port);
}
}
//ard_tcp_print_stats(_ttcp);
printk("Data avail:%s\n", isAvailTcpDataByte(i)?"YES":"NO");
printk("------------------------------\n");
}
}
}
tcp_debug_print_pcbs();
}
int write_stream(volatile avr32_spi_t *spi, const char *stream, uint16_t len)
{
uint16_t _len = 0;
unsigned short dummy=0;
do {
//SIGN1_DN();
if (spi_write(spi, *stream) == SPI_ERROR_TIMEOUT)
{
#ifdef _SPI_STATS_
statSpi.timeoutErr++;
statSpi.txErr++;
statSpi.lastError = SPI_ERROR_TIMEOUT;
statSpi.status = spi_getStatus(spi);
#endif
return SPI_ERROR_TIMEOUT;
}
else
{
stream++;
_len++;
spi_read(spi,&dummy);
}
//SIGN1_UP();
}while (_len < len);
return SPI_OK;
}
void sendError()
{
AVAIL_FOR_SPI();
if (spi_write(&AVR32_SPI, ERR_CMD) != SPI_ERROR_TIMEOUT)
{
//Wait to empty the buffer
while(!spi_writeRegisterEmptyCheck(&AVR32_SPI));
}
BUSY_FOR_SPI();
WARN("Send SPI error!\n");
}
#define ENABLE_SPI_INT() do { \
volatile avr32_spi_t *spi = ARD_SPI; \
Bool global_interrupt_enabled = Is_global_interrupt_enabled(); \
if (global_interrupt_enabled) Disable_global_interrupt(); \
spi->IER.rdrf = 1; spi->IER.rxbuff = 1; spi->IER.endrx = 1; \
if (global_interrupt_enabled) Enable_global_interrupt(); \
}while(0);
#define DISABLE_SPI_INT() do { \
volatile avr32_spi_t *spi = ARD_SPI; \
Bool global_interrupt_enabled = Is_global_interrupt_enabled(); \
if (global_interrupt_enabled) Disable_global_interrupt(); \
spi->IDR.rdrf = 1; spi->IDR.rxbuff = 1; spi->IDR.endrx = 1; \
if (global_interrupt_enabled) Enable_global_interrupt(); \
}while(0);
#define CLEAR_SPI_INT() do { \
eic_clear_interrupt_line(&AVR32_EIC, AVR32_SPI0_IRQ); \
}while(0);
int spi_add_cmd(char _cmd_id, cmd_spi_cb_t cb, cmd_spi_rcb_t rcb, void* ctx,
char flag) {
U32 i;
for (i = 0; i < ARRAY_SIZE(cmd_spi_list); i++)
if (!cmd_spi_list[i].cb)
break;
if (i == ARRAY_SIZE(cmd_spi_list))
{
printk("List Commands full!\n");
return -1;
}
cmd_spi_list[i].cmd_id = _cmd_id;
cmd_spi_list[i].cb = cb;
cmd_spi_list[i].reply_cb = rcb;
cmd_spi_list[i].ctx = ctx;
cmd_spi_list[i].flags = flag;
return 0;
}
int set_net_cmd_cb(int numParam, char* buf, void* ctx) {
struct wl_ssid_t ssid;
wl_err_t err = WL_FAILURE;
tParam* param = (tParam*) buf;
if (param->paramLen < WL_SSID_MAX_LENGTH) {
memcpy(ssid.ssid, &param->param, param->paramLen);
ssid.len = param->paramLen;
ssid.ssid[ssid.len] = 0;
INFO_SPI("SSID:%s\n", ssid.ssid);
//dump(ssid.ssid, ssid.len);
err = wl_cm_set_network(&ssid, NULL);
if (err != 1)
WARN("err=%d\n", err);
} else {
WARN("SSID len out of range");
}
return err;
}
extern uint8_t ascii_to_key(char *outp, const char *inp);
int set_key_cmd_cb(int numParam, char* buf, void* ctx) {
struct wl_ssid_t ssid;
struct wl_mac_addr_t bssid;
uint8_t idx=0, len=0;
char key[13], key_hex[27];
char keyIdx[2];
wl_err_t err = WL_SUCCESS;
tParam* params = (tParam*) buf;
INFO_SPI("%s params=%d\n", __FUNCTION__, numParam);
// SSID
memset(&ssid, 0, sizeof ssid);
if (params->paramLen < WL_SSID_MAX_LENGTH) {
memcpy(ssid.ssid, &params->param, params->paramLen);
ssid.len = params->paramLen;
INFO_SPI("%s\n", ssid.ssid);
} else {
//printk("SSID len out of range");
RETURN_ERR(WL_FAILURE)
}
params = (tParam*)((char*)buf+PARAM_LEN_SIZE+params->paramLen);
strncpy(keyIdx, (const char*)&params->param, params->paramLen);
keyIdx[(uint8_t)params->paramLen]='\0';
idx = (uint8_t)atoi(keyIdx);
// KEY IDX
if ((params->paramLen != 1)||(idx < 0)||(idx > 3)){
//printk("KEY IDX out of range %d\n", idx);
RETURN_ERR(WL_FAILURE)
}
params = (tParam*)((char*)params+PARAM_LEN_SIZE+params->paramLen);
strncpy(key_hex, (const char*)&params->param, params->paramLen);
key_hex[(uint8_t)params->paramLen]='\0';
len = ascii_to_key(key, key_hex);
// KEY
if (( len != 5)&&(len != 13))
{
//printk("KEY len out of range %d", len);
RETURN_ERR(WL_FAILURE)
}
#if 0
printk("KEY IDX = %d\n", idx);
dump(key, len);
printk("KEY len %d\n", len);
#endif
memset(&bssid.octet, 0xff, sizeof bssid.octet);
wl_add_wep_key(idx, len, key, &bssid);
//wl_set_auth_mode(AUTH_MODE_SHARED_KEY);
wl_set_default_wep_key(idx);
//Connect
err = wl_cm_set_network(&ssid, NULL);
if (err != 1)
WARN("err=%d\n", err);
RETURN_ERR(err)
}
int set_passphrase_cmd_cb(int numParam, char* buf, void* ctx) {
struct wl_network_t net;
char pass[64];
wl_err_t err = WL_SUCCESS;
tParam* params = (tParam*) buf;
INFO_SPI("%s params=%d\n", __FUNCTION__, numParam);
memset(&net, 0, sizeof net);
memset(net.bssid.octet, 0xFF, sizeof net.bssid.octet);
net.enc_type = ENC_TYPE_AUTO;
// SSID
if (params->paramLen < WL_SSID_MAX_LENGTH) {
memcpy(net.ssid.ssid, &params->param, params->paramLen);
net.ssid.len = params->paramLen;
INFO_SPI("%s %d\n", net.ssid.ssid, net.ssid.len);
} else {
//printk("SSID len out of range");
RETURN_ERR(WL_FAILURE)
}
params = (tParam*)((char*)buf+PARAM_LEN_SIZE+params->paramLen);
// PASSPHRASE
strncpy(pass, (const char*)&params->param, params->paramLen);
pass[(uint8_t)params->paramLen]='\0';
INFO_SPI("Pass: %s %d\n", pass, params->paramLen);
if (wl_set_passphrase(&net,
pass,
params->paramLen,
ENC_TYPE_AUTO,
AUTH_MODE_AUTO)
!= WL_SUCCESS) {
WARN("%s : Failed to add passphrase\n", __func__);
RETURN_ERR(WL_FAILURE)
}
printk("Connect to network...");
//Connect
err = wl_cm_set_network(&net.ssid, NULL);
if (err != 1)
printk("err=%d\n", err);
else
printk("OK\n");
RETURN_ERR(err)
}
int set_ip_config_cmd_cb(int numParam, char* buf, void* ctx) {
struct ip_addr lwip_addr;
struct ctx_server *hs = ctx;
struct net_cfg *ncfg = &(hs->net_cfg);
struct netif *nif = ncfg->netif;
uint8_t parmsToChange=0;
const uint8_t MAX_IP_CONFIG_PARAMS = 3;
wl_err_t err = WL_SUCCESS;
tParam* params = (tParam*) buf;
if (params->paramLen == 1)
{
GET_PARAM_NEXT(BYTE, params, _parmsToChange);
parmsToChange = _parmsToChange;
}
else
RETURN_ERR(WL_FAILURE)
INFO_SPI("%p numParam=%d parmsToChange=%d\n", ctx, numParam, parmsToChange);
if (parmsToChange <= MAX_IP_CONFIG_PARAMS)
{
int i=0;
for (; i<parmsToChange; ++i)
{
if (params->paramLen == 4)
{
GET_PARAM_NEXT(LONG, params, _ip_addr);
lwip_addr.addr = _ip_addr;
INFO_SPI("%d] nif:%p lwip_addr=0x%x\n", i, nif, lwip_addr.addr);
switch (i)
{
case 0: // local_ip
{
netif_set_ipaddr(nif, &lwip_addr);
break;
}
case 1: // gateway
{
netif_set_gw(nif, &lwip_addr);
break;
}
case 2: // subnet
{
netif_set_netmask(nif, &lwip_addr);
break;
}
}
}else{
RETURN_ERR(WL_FAILURE)
}
}
/* Disable DHCP */
ncfg->dhcp_enabled = STATIC_IP_CONFIG;
}else
RETURN_ERR(WL_FAILURE)
RETURN_ERR(err)
}
int set_dns_config_cmd_cb(int numParam, char* buf, void* ctx) {
struct ip_addr lwip_addr;
struct ctx_server *hs = ctx;
struct net_cfg *ncfg = &(hs->net_cfg);
struct netif *nif = ncfg->netif;
uint8_t parmsToChange=0;
const uint8_t MAX_DNS_CONFIG_PARAMS = 2;
wl_err_t err = WL_SUCCESS;
tParam* params = (tParam*) buf;
if (params->paramLen == 1)
{
GET_PARAM_NEXT(BYTE, params, _parmsToChange);
parmsToChange = _parmsToChange;
}
else
RETURN_ERR(WL_FAILURE)
INFO_SPI("%p numParam=%d parmsToChange=%d\n", ctx, numParam, parmsToChange);
if (parmsToChange <= MAX_DNS_CONFIG_PARAMS)
{
int i=0;
for (; i<parmsToChange; ++i)
{
if (params->paramLen == 4)
{
GET_PARAM_NEXT(LONG, params, _ip_addr);
lwip_addr.addr = _ip_addr;
INFO_SPI("%d] nif:%p lwip_addr=0x%x\n", i, nif, lwip_addr.addr);
dns_setserver(i, &lwip_addr);
}else{
RETURN_ERR(WL_FAILURE)
}
}
/* Disable DHCP */
ncfg->dhcp_enabled = STATIC_IP_CONFIG;
}else
RETURN_ERR(WL_FAILURE)
RETURN_ERR(err)
}
void set_result(wl_status_t _status)
{
result = _status;
}
void set_result_cmd(int err)
{
wl_err_t _err = (wl_err_t)err;
switch (_err)
{
case WL_SUCCESS:
set_result(WL_CONNECTED);
ERROR_LED_OFF();
break;
default:
case WL_OOM:
case WL_INVALID_LENGTH:
case WL_NOT_SUPPORTED:
case WL_ABSORBED:
case WL_RESOURCES:
case WL_BUSY:
case WL_RETRY:
case WL_FAILURE:
set_result(WL_CONNECT_FAILED);
ERROR_LED_ON();
break;
}
INFO_SPI("%s %d\n", __FUNCTION__, result);
}
extern int ttcp_start(struct ip_addr addr, uint16_t port, void *opaque,
void *done_cb, int mode, uint16_t nbuf, uint16_t buflen, int udp, int verbose);
int start_server_tcp(uint16_t port, uint8_t sock, uint8_t protMode)
{
struct ip_addr addr = { 0 };
uint16_t buflen = 1024;
uint16_t nbuf = 1024;
wl_err_t err = WL_FAILURE;
#ifdef _APP_DEBUG_
int verbose = 1;
#else
int verbose = 0;
#endif
int udp = protMode;
int mode = 1; //RECEIVE
void* _ttcp = NULL;
if (sock >= MAX_SOCK_NUM)
return WIFI_SPI_ERR;
if (_connected)
{
WARN("Still connected...wait\n");
return WIFI_SPI_ERR;
}
if (!ifStatus)
{
WARN_VER("IF down...wait\n");
return WIFI_SPI_ERR;
}
if (ard_tcp_start(addr, port, NULL, NULL, mode, nbuf, buflen, udp, verbose, sock, &_ttcp) == 0)
{
INFO_SPI("Start Server %s [%d, %d] OK!\n", ProtMode2Str(protMode), port, sock);
setMapSock(sock, _ttcp);
err = WL_SUCCESS;
}else{
WARN("Start Server %s [%d, %d] FAILED!\n", ProtMode2Str(protMode), port, sock);
clearMapSockTcp(sock, TTCP_MODE_RECEIVE);
}
return err;
}
int start_server_tcp_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
tParam* params = (tParam*) buf;
if (numParam == 3)
{
GET_PARAM_NEXT(INT, params, port);
GET_PARAM_NEXT(BYTE, params, sock);
GET_PARAM_NEXT(BYTE, params, protMode);
err = start_server_tcp(port, sock, protMode);
}
return (err==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
}
int start_client_tcp(uint32_t _addr, uint16_t port, uint8_t sock, uint8_t protMode)
{
uint16_t buflen = 1024;
uint16_t nbuf = 1024;
wl_err_t err = WL_FAILURE;
struct ip_addr addr = { .addr = _addr};
INFO_SPI("Addr:0x%x, port:%d, sock:%d, prot:%s\n", _addr, port, sock, ProtMode2Str(protMode));
#ifdef _APP_DEBUG_
int verbose = 1;
#else
int verbose = 0;
#endif
int udp = protMode;
int mode = 0; //TRANSMIT
void* _ttcp = NULL;
if (sock >= MAX_SOCK_NUM)
return WIFI_SPI_ERR;
// Check previous connection
_ttcp = getTTCP(sock, TTCP_MODE_TRANSMIT);
if (_ttcp != NULL)
{
WARN("Previous client %p not stopped !\n", _ttcp);
ard_tcp_stop(_ttcp);
clearMapSockTcp(sock, TTCP_MODE_TRANSMIT);
}
if (ard_tcp_start(addr, port, NULL, NULL, mode, nbuf, buflen, udp, verbose, sock, &_ttcp) == 0)
{
INFO_SPI("Start Client %s %p [0x%x, %d, %d] OK!\n", ProtMode2Str(protMode),
_ttcp, addr, port, sock);
setMapSock(sock, _ttcp);
err = WL_SUCCESS;
}else{
INFO_SPI("Start Client %s %p [0x%x, %d, %d] FAILED!\n", ProtMode2Str(protMode),
_ttcp, addr, port, sock);
clearMapSockTcp(sock, TTCP_MODE_TRANSMIT);
}
return err;
}
int start_client_tcp_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
tParam* params = (tParam*) buf;
if (numParam == 4)
{
GET_PARAM_NEXT(LONG, params, _addr);
GET_PARAM_NEXT(INT, params, port);
GET_PARAM_NEXT(BYTE, params, sock);
GET_PARAM_NEXT(BYTE, params, protMode);
err = start_client_tcp(_addr, port, sock, protMode);
}
return (err==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
}
int stop_client_tcp_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
tParam* params = (tParam*) buf;
void* _ttcp = NULL;
if (numParam == 1)
{
GET_PARAM_NEXT(BYTE, params, sock);
INFO_SPI("Stop client sock:%d\n", sock);
if (sock < MAX_SOCK_NUM)
{
_ttcp = getTTCP(sock, TTCP_MODE_TRANSMIT);
ard_tcp_stop(_ttcp);
err = WL_SUCCESS;
}
}
return (err==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
}
int insert_data_cmd_cb(int numParam, char* buf, void* ctx) {
tDataParam* msg = (tDataParam*) buf;
if ((numParam == 2)&&(msg->dataLen == 1))
{
GET_DATA_BYTE(sock, buf+2);
GET_DATA_INT(len, buf+3);
//printk("tcp:%p buf:%p len:%d\n", getTTCP(sock), (uint8_t*)(buf+5), len);
insertBuf(sock, (uint8_t*)(buf+5), len);
}
return WIFI_SPI_ACK;
}
int send_data_udp_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
tParam* params = (tParam*) buf;
if ((numParam == 1)&&(params->paramLen == 1))
{
GET_PARAM_NEXT(BYTE, params, sock);
uint16_t len = 0;
uint8_t* p = mergeBuf(sock, NULL, &len);
err = sendUdpData(getTTCP(sock, TTCP_MODE_TRANSMIT), p, len);
clearBuf(sock);
free(p);
}
return (err==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
}
int send_data_tcp_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
DATA_LED_ON();
tDataParam* msg = (tDataParam*) buf;
if ((numParam == 2)&&(msg->dataLen == 1))
{
GET_DATA_BYTE(sock, buf+2);
GET_DATA_INT(len, buf+3);
//printk("tcp:%p buf:%p len:%d\n", getTTCP(sock), (uint8_t*)(buf+5), len);
err = sendTcpData(getTTCP(sock, TTCP_MODE_TRANSMIT), (uint8_t*)(buf+5), len);
}
DATA_LED_OFF();
return (err==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
}
int ack_cmd_cb(int numParam, char* buf, void* ctx) {
return WIFI_SPI_ACK;
}
int get_result_cmd_cb(int numParam, char* buf, void* ctx) {
INFO_SPI("ifStatus:%d result:%d\n", ifStatus, result);
return WIFI_SPI_ACK;
}
int disconnect_cmd_cb(int numParam, char* buf, void* ctx)
{
return ((wl_disconnect()==WL_SUCCESS)? WIFI_SPI_ACK : WIFI_SPI_ERR);
}
cmd_spi_state_t get_reply_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CREATE_HEADER_REPLY(reply, recv, 1);
reply[3] = 1; // paramLen
if (ctx != NULL) {
reply[4] = (*(uint8_t*)ctx); //param
} else {
reply[4] = (ifStatus)?WL_CONNECTED:result; //param
}
END_HEADER_REPLY(reply, 5, *count);
//INFO_SPI("result:%d\n", result);
return SPI_CMD_DONE;
}
cmd_spi_state_t ack_reply_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CREATE_HEADER_REPLY(reply, recv, 1);
reply[3] = 1; // paramLen
if (ctx != NULL) {
reply[4] = (*(uint8_t*) ctx != 1) ? WIFI_SPI_ERR : WIFI_SPI_ACK; //param
} else {
reply[4] = WIFI_SPI_ACK; //param
}
END_HEADER_REPLY(reply, 5, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_reply_ipaddr_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 3);
PUT_LONG_IN_BYTE_NO(ard_netif->ip_addr.addr, reply, 3);
PUT_LONG_IN_BYTE_NO(ard_netif->netmask.addr, reply, 8);
PUT_LONG_IN_BYTE_NO(ard_netif->gw.addr, reply, 13);
END_HEADER_REPLY(reply, 18, *count);
return SPI_CMD_DONE;
}
void getRemoteData(uint8_t sock, uint8_t mode, tRemoteClient* remoteData)
{
if ((sock>=0) && (sock<MAX_SOCK_NUM))
{
void* p = getTTCP(sock, mode);
if (p)
{
ttcp_t* _ttcp = (ttcp_t* )p;
if ((_ttcp->udp == UDP_MODE))
{
if (_ttcp->mode == TTCP_MODE_RECEIVE)
{
remoteData->ipaddr = getRemoteClient(sock)->ipaddr;
remoteData->port = getRemoteClient(sock)->port;
}else{
remoteData->ipaddr = (_ttcp->upcb) ? _ttcp->upcb->remote_ip.addr : 0;
remoteData->port = (_ttcp->upcb) ? _ttcp->upcb->remote_port : 0;
}
}
}
}
}
cmd_spi_state_t get_reply_remote_data_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
DUMP_SPI_CMD(recv);
GET_DATA_BYTE(sock, recv+4);
CREATE_HEADER_REPLY(reply, recv, 2);
tRemoteClient remoteData = {0,0};
//TODO pass the mode
getRemoteData(sock, TTCP_MODE_RECEIVE, &remoteData);
PUT_LONG_IN_BYTE_NO(remoteData.ipaddr, reply, 3);
PUT_DATA_INT(remoteData.port, reply, 8);
END_HEADER_REPLY(reply, 11, *count);
return SPI_CMD_DONE;
}
void foundHostByName(const char *name, struct ip_addr *ipaddr, void *callback_arg)
{
_hostIpAddr.addr = (ipaddr)?ipaddr->addr:0xffffffff;
INFO_SPI("foundHostByName: Found Host: name=%s ip=0x%x\n", name, _hostIpAddr.addr);
hostIpAddrFound = true;
}
int req_reply_host_by_name_cb(int numParam, char* buf, void* ctx) {
char hostName[DNS_MAX_NAME_LENGTH];
tParam* params = (tParam*) buf;
// HostName
if (params->paramLen < DNS_MAX_NAME_LENGTH) {
memcpy(hostName, &params->param, params->paramLen);
hostName[params->paramLen]='\0';
} else {
RETURN_ERR(WL_FAILURE)
}
INFO_SPI("Looking for Host: name=%s\n", hostName);
_hostIpAddr.addr = 0;
hostIpAddrFound = false;
err_t err = dns_gethostbyname(hostName, &_hostIpAddr, foundHostByName, NULL);
if (err == ERR_OK)
{
INFO_SPI("Found Host: name=%s ip=0x%x\n", hostName, _hostIpAddr.addr);
hostIpAddrFound = true;
RETURN_ERR(WL_SUCCESS)
}
RETURN_ERR(WL_FAILURE)
}
cmd_spi_state_t get_reply_host_by_name_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
u32_t addr = (hostIpAddrFound)?_hostIpAddr.addr : 0xffffffff;
INFO_SPI("Searching for Host: ip=0x%x found=%d\n", addr, hostIpAddrFound);
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 1);
PUT_LONG_IN_BYTE_NO(addr, reply, 3);
END_HEADER_REPLY(reply, 8, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_reply_mac_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 1);
reply[3] = WL_MAC_ADDR_LENGTH;
uint8_t mac[WL_MAC_ADDR_LENGTH];
if (wl_get_mac_addr(mac) != WL_SUCCESS) {
RETURN_ERR_REPLY(recv, reply, count);
}
//rotate the byte order
reply[4]=mac[5];
reply[5]=mac[4];
reply[6]=mac[3];
reply[7]=mac[2];
reply[8]=mac[1];
reply[9]=mac[0];
END_HEADER_REPLY(reply, 10, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_reply_curr_net_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
uint32_t type = (uint32_t)ctx;
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 1);
struct wl_network_t* net = wl_get_current_network();
uint8_t len = 0;
if (net != NULL)
{
switch (type)
{
default:
case GET_CURR_SSID_CMD:
{
len = net->ssid.len;
PUT_BUFDATA_BYTE(net->ssid.ssid, len, reply, 3);
break;
}
case GET_CURR_BSSID_CMD:
{
len = WL_MAC_ADDR_LENGTH; ;
PUT_BUFDATA_BYTE_REV(net->bssid.octet, len, reply, 3);
break;
}
case GET_CURR_RSSI_CMD:
{
len=sizeof(net->rssi);
PUT_LONG_IN_BYTE_HO(net->rssi, reply, 3);
//printk("RSSI:%d", net->rssi);
break;
}
case GET_CURR_ENCT_CMD:
{
len = sizeof(net->enc_type);
PUT_DATA_BYTE(net->enc_type, reply, 3);
//printk("ENCT:%d", net->enc_type);
break;
}
}
}else{
PUT_DATA_BYTE(0, reply, 3);
}
END_HEADER_REPLY(reply, 3+len+1, *count);
//dump(reply, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_reply_idx_net_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
uint32_t type = (uint32_t)ctx;
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 1);
DUMP_SPI_CMD(recv);
GET_DATA_BYTE(idx, recv+4);
if (idx >= WL_NETWORKS_LIST_MAXNUM)
{
WARN("Index out of range: %d\n", idx);
return SPI_CMD_DONE;
}
uint8_t len = 0;
switch (type)
{
default:
case GET_IDX_SSID_CMD:
{
len = network_list.net[idx]->ssid.len;
PUT_BUFDATA_BYTE(network_list.net[idx]->ssid.ssid, len, reply, 3);
INFO_UTIL("SSID:%s\n", network_list.net[idx]->ssid.ssid);
break;
}
case GET_IDX_RSSI_CMD:
{
len = 4;
PUT_LONG_IN_BYTE_HO(network_list.net[idx]->rssi, reply, 3);
INFO_UTIL("RSSI:%d\n", network_list.net[idx]->rssi);
break;
}
case GET_IDX_ENCT_CMD:
{
len = 1;
PUT_DATA_BYTE(network_list.net[idx]->enc_type, reply, 3);
INFO_UTIL("ENCT:%d\n", network_list.net[idx]->enc_type);
break;
}
}
END_HEADER_REPLY(reply, 3+len+1, *count);
DUMP(reply, *count);
return SPI_CMD_DONE;
}
static void copy_network_list(struct wl_network_list_t *dst,
struct wl_network_list_t *src)
{
int i;
for (i = 0; i < dst->cnt; i++)
free(dst->net[i]);
free(dst->net);
dst->cnt = 0;
if (src->cnt == 0)
return;
dst->net = calloc(1, src->cnt * sizeof(struct wl_network_t *));
if (dst->net == NULL) {
printk("could not allocate all gui net array\n");
return;
}
for (i = 0; i < src->cnt; i++) {
struct wl_network_t *net = src->net[i];
dst->net[i] = malloc(sizeof(*net));
if (dst->net[i] == NULL) {
printk("could not allocate all gui nets\n");
return;
}
memcpy(dst->net[i], net, sizeof(*net));
dst->cnt++;
}
}
int start_scan_net_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
INFO_SPI("Start Network Scan %d\n", numParam);
if (scanNetCompleted){
scanNetCompleted = false;
err = wl_scan();
if (err != WL_SUCCESS)
{
// May be busy scanning already, no fatal error
WARN("err=%d\n", err);
err = WL_SUCCESS;
}
}
return err;
}
cmd_spi_state_t get_reply_scan_networks_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
const int8_t SCAN_NOT_YET_COMPLETED = 0;
if (!scanNetCompleted)
{
//return empty list with an error to retry
CREATE_HEADER_REPLY(reply, recv, SCAN_NOT_YET_COMPLETED);
END_HEADER_REPLY(reply, 3, *count);
INFO_SPI("Scan not completed!\n");
return SPI_CMD_DONE;
}
int network_cnt = 0;
struct wl_network_list_t* wl_network_list;
wl_get_network_list(&wl_network_list);
if (wl_network_list->cnt == 0)
{
CREATE_HEADER_REPLY(reply, recv, 0);
END_HEADER_REPLY(reply, 3, *count);
INFO_SPI("Networks not found!\n");
return SPI_CMD_DONE;
}
if (wl_network_list->cnt > WL_NETWORKS_LIST_MAXNUM)
{
network_cnt = WL_NETWORKS_LIST_MAXNUM ;
}
else{
network_cnt = wl_network_list->cnt ;
}
copy_network_list(&network_list, wl_network_list);
CREATE_HEADER_REPLY(reply, recv, network_cnt);
uint8_t start = 3;
int ii = 0;
for (; ii < network_cnt; ii++)
{
uint8_t len = network_list.net[ii]->ssid.len+1;
network_list.net[ii]->ssid.ssid[network_list.net[ii]->ssid.len]=0;
PUT_BUFDATA_BYTE(network_list.net[ii]->ssid.ssid, len, reply, start);
start += len+1;
INFO_SPI("%d - %s [%d]- %d - %d - 0x%x\n",ii, network_list.net[ii]->ssid.ssid,
len, network_list.net[ii]->enc_type,
network_list.net[ii]->rssi, network_list.net[ii]->bssid);
}
END_HEADER_REPLY(reply, start, *count);
//DUMP(reply, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_state_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
uint8_t _state = CLOSED;
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
_state = getStateTcp(getTTCP((uint8_t)recv[4], TTCP_MODE_RECEIVE), 0);
}
PUT_DATA_BYTE(_state, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
INFO_SPI_POLL("state:%d\n", _state);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_client_state_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
uint8_t _state = CLOSED;
uint8_t _sock = recv[4];
if ((recv[3]==1)&&(_sock>=0)&&(_sock<MAX_SOCK_NUM))
{
void * p= getTTCP(_sock, TTCP_MODE_TRANSMIT);
if (p!=NULL)
{
_state = getStateTcp(p, 1);
}else{
WARN_VER("TTCP not found for sock:%d\n", _sock);
}
}
PUT_DATA_BYTE(_state, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
INFO_SPI_POLL("sock:%d state:%d\n", _sock, _state);
return SPI_CMD_DONE;
}
cmd_spi_state_t avail_data_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
uint16_t dataAvail = 0;
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
dataAvail = getAvailTcpDataByte((uint8_t)recv[4]);
}
PUT_DATA_INT_NO(dataAvail, reply, 3);
END_HEADER_REPLY(reply, 6, *count);
INFO_SPI_POLL("dataAvail:%d\n", dataAvail);
return SPI_CMD_DONE;
}
cmd_spi_state_t test_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
static int counter = 0;
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
PUT_DATA_BYTE(++counter, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t data_sent_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
SIGN2_DN();
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
uint8_t dataSent = 0;
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
dataSent = isDataSent(getTTCP((uint8_t)recv[4], TTCP_MODE_TRANSMIT));
}
PUT_DATA_BYTE(dataSent, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
SIGN2_UP();
return SPI_CMD_DONE;
}
cmd_spi_state_t get_data_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
uint8_t data;
CHECK_ARD_NETIF(recv, reply, count);
tParam* params = (tParam*)&recv[3];
GET_PARAM_NEXT(BYTE, params, _sock);
GET_PARAM_NEXT(INT, params, _peek);
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
SIGN2_DN();
if (getTcpDataByte((uint8_t)recv[4], &data, _peek))
{
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
PUT_DATA_BYTE(data, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
}else{
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_0);
END_HEADER_REPLY(reply, 3, *count);
}
SIGN2_UP();
}
return SPI_CMD_DONE;
}
cmd_spi_state_t get_databuf_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
uint8_t* data;
uint16_t len;
CHECK_ARD_NETIF(recv, reply, count);
GET_DATA_BYTE(sock, buf+5);
if ((sock>=0)&&(sock<MAX_SOCK_NUM))
{
if (getTcpData((uint8_t)sock, (void**)&data, &len))
{
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
PUT_BUFDATA_INT(data, len, reply, 3);
END_HEADER_REPLY(reply, 3+len+2, *count);
freeTcpData((uint8_t)sock);
}else{
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_0);
END_HEADER_REPLY(reply, 3, *count);
}
}
return SPI_CMD_DONE;
}
cmd_spi_state_t get_firmware_version_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 1);
uint8_t len = strlen(fwVersion);
PUT_BUFDATA_BYTE(fwVersion, len, reply, 3);
END_HEADER_REPLY(reply, 3+len+1, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_test_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
uint8_t buffer[255] = {0};
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 1);
uint8_t len = 0;
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<0xFF))
{
len = recv[4];
int i= 0;
for (; i<len; ++i) buffer[i]=i;
PUT_BUFDATA_BYTE(buffer, len, reply, 3);
}else{
len = strlen(fwVersion);
PUT_BUFDATA_BYTE(fwVersion, len, reply, 3);
}
END_HEADER_REPLY(reply, 3+len+1, *count);
return SPI_CMD_DONE;
}
int sendReply(int cmdIdx, char* recv, char* reply, void* resultCmd)
{
uint16_t _count = 0;
int _result = SPI_OK;
cmd_spi_list[cmdIdx].reply_cb(recv, reply, resultCmd, &_count);
state = SPI_CMD_REPLING;
AVAIL_FOR_SPI();
_result = write_stream(ARD_SPI, &reply[0], _count);
#ifdef _SPI_STATS_
if ( _result != SPI_OK)
{
statSpi.lastCmd = cmd_spi_list[cmdIdx].cmd_id;
}
#endif
BUSY_FOR_SPI();
IF_SPI_DUMP(printk("==>"));
DUMP_SPI(recv, count);
IF_SPI_DUMP(printk("<=="));
DUMP_SPI(reply, _count);
replyCount = _count;
return _result;
}
unsigned char* getStartCmdSeq(unsigned char* _recv, int len, int *offset)
{
int i = 0;
*offset = 0;
//DEB_PIN_UP();
for (; i<len; ++i)
{
if (_recv[i]==START_CMD)
{
if (i!=0)
{
DEB_PIN_TRIGGER();
IF_WARN_VER(dump((char*)_recv, (uint16_t)len));
WARN("%d] Disall. %d/%d cmd:%d\n", cmdCorr, i, len,_recv[i+1]);
}
*offset = i;
return &_recv[i];
}
}
//DEB_PIN_DN();
WARN("%d] Disall. %d\n", cmdCorr, i);
return NULL;
}
inline bool spiMsg8(uint8_t cmd)
{
return ((cmd & DATA_FLAG)==0);
}
int call_reply_cb(char* recv, char* reply) {
// // check the start of message
// //TODO CHECK if also the ,en must be resize
// //char* recv = (char*)getStartCmdSeq((unsigned char*)_recv, &count);
// char* recv = (char*)getStartCmdSeq((unsigned char*)_recv, count);
// if (recv == NULL)
// return REPLY_ERR_MSG;
unsigned char cmdId = (unsigned char) recv[1];
uint8_t _result = REPLY_NO_ERR;
U32 i;
for (i = 0; i < ARRAY_SIZE(cmd_spi_list); i++) {
if (cmd_spi_list[i].cmd_id == cmdId) {
if (cmd_spi_list[i].flags == CMD_SET_FLAG) {
//Send Reply for SET commands
if (sendReply(i, recv, reply, cmd_spi_list[i].ctx) != SPI_OK)
return REPLY_ERR_SET;
if (spiMsg8(cmdId))
{
tSpiMsg* spiMsg = (tSpiMsg*) recv;
_result = cmd_spi_list[i].cb(spiMsg->nParam,
(char*) &(spiMsg->params[0]), cmd_spi_list[i].ctx);
}else
{
tSpiMsgData* spiMsg = (tSpiMsgData*) recv;
_result = cmd_spi_list[i].cb(spiMsg->nParam,
(char*) &(spiMsg->params[0]), cmd_spi_list[i].ctx);
}
if (_result != WIFI_SPI_ACK)
return REPLY_ERR_CMD;
else
return REPLY_NO_ERR;
}else{
if (spiMsg8(cmdId))
{
tSpiMsg* spiMsg = (tSpiMsg*) recv;
_result = cmd_spi_list[i].cb(spiMsg->nParam,
(char*) &(spiMsg->params[0]), NULL);
}else{
tSpiMsgData* spiMsg = (tSpiMsgData*) recv;
_result = cmd_spi_list[i].cb(spiMsg->nParam,
(char*) &(spiMsg->params[0]), NULL);
}
//Send Reply for GET commands or Immediate SET apply
if (cmd_spi_list[i].flags == CMD_GET_FLAG) {
if (sendReply(i, recv, reply, cmd_spi_list[i].ctx) != SPI_OK)
return REPLY_ERR_GET;
else
return REPLY_NO_ERR;
}else if (cmd_spi_list[i].flags == CMD_IMM_SET_FLAG)
{
if (sendReply(i, recv, reply, &_result) != SPI_OK)
return REPLY_ERR_GET;
else
return REPLY_NO_ERR;
}
}
}
}
// Command not found
if (i==ARRAY_SIZE(cmd_spi_list))
{
WARN("Unknown cmd 0x%x\n", cmdId);
DUMP(recv, count);
return REPLY_ERR_CMD;
}
return REPLY_NO_ERR;
}
void init_spi_cmds(void* ctx) {
spi_add_cmd(SET_NET_CMD, set_net_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(SET_PASSPHRASE_CMD, set_passphrase_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(SET_KEY_CMD, set_key_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(SET_IP_CONFIG_CMD, set_ip_config_cmd_cb, ack_reply_cb, ctx, CMD_SET_FLAG);
spi_add_cmd(SET_DNS_CONFIG_CMD, set_dns_config_cmd_cb, ack_reply_cb, ctx, CMD_SET_FLAG);
spi_add_cmd(GET_CONN_STATUS_CMD, get_result_cmd_cb, get_reply_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_IPADDR_CMD, ack_cmd_cb, get_reply_ipaddr_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_MACADDR_CMD, ack_cmd_cb, get_reply_mac_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_CURR_SSID_CMD, ack_cmd_cb, get_reply_curr_net_cb, (void*)GET_CURR_SSID_CMD, CMD_GET_FLAG);
spi_add_cmd(GET_CURR_BSSID_CMD, ack_cmd_cb, get_reply_curr_net_cb, (void*)GET_CURR_BSSID_CMD, CMD_GET_FLAG);
spi_add_cmd(GET_CURR_RSSI_CMD, ack_cmd_cb, get_reply_curr_net_cb, (void*)GET_CURR_RSSI_CMD, CMD_GET_FLAG);
spi_add_cmd(GET_CURR_ENCT_CMD, ack_cmd_cb, get_reply_curr_net_cb, (void*)GET_CURR_ENCT_CMD, CMD_GET_FLAG);
spi_add_cmd(START_SCAN_NETWORKS, start_scan_net_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(SCAN_NETWORKS, ack_cmd_cb, get_reply_scan_networks_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(DISCONNECT_CMD, disconnect_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(GET_IDX_ENCT_CMD, ack_cmd_cb, get_reply_idx_net_cb, (void*)GET_IDX_ENCT_CMD, CMD_GET_FLAG);
spi_add_cmd(GET_IDX_SSID_CMD, ack_cmd_cb, get_reply_idx_net_cb, (void*)GET_IDX_SSID_CMD, CMD_GET_FLAG);
spi_add_cmd(GET_IDX_RSSI_CMD, ack_cmd_cb, get_reply_idx_net_cb, (void*)GET_IDX_RSSI_CMD, CMD_GET_FLAG);
spi_add_cmd(REQ_HOST_BY_NAME_CMD, req_reply_host_by_name_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(GET_HOST_BY_NAME_CMD, ack_cmd_cb, get_reply_host_by_name_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(START_SERVER_TCP_CMD, start_server_tcp_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(START_CLIENT_TCP_CMD, start_client_tcp_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(STOP_CLIENT_TCP_CMD, stop_client_tcp_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(GET_STATE_TCP_CMD, ack_cmd_cb, get_state_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_DATA_TCP_CMD, ack_cmd_cb, get_data_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(AVAIL_DATA_TCP_CMD, ack_cmd_cb, avail_data_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(SEND_DATA_TCP_CMD, send_data_tcp_cmd_cb, ack_reply_cb, NULL, CMD_IMM_SET_FLAG);
spi_add_cmd(DATA_SENT_TCP_CMD, ack_cmd_cb, data_sent_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_DATABUF_TCP_CMD, ack_cmd_cb, get_databuf_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_CLIENT_STATE_TCP_CMD, ack_cmd_cb, get_client_state_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_FW_VERSION_CMD, ack_cmd_cb, get_firmware_version_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_TEST_CMD, ack_cmd_cb, get_test_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(INSERT_DATABUF_CMD, insert_data_cmd_cb, ack_reply_cb, NULL, CMD_IMM_SET_FLAG);
spi_add_cmd(SEND_DATA_UDP_CMD, send_data_udp_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(GET_REMOTE_DATA_CMD, ack_cmd_cb, get_reply_remote_data_cb, NULL, CMD_GET_FLAG);
}
int checkMsgParam8(unsigned char* buf)
{
int paramLenTot=0;
tSpiMsg* spiMsg = (tSpiMsg*)buf;
tParam *param = spiMsg->params;
int i=0;
for (; i<spiMsg->nParam; ++i)
{
uint8_t _len = param->paramLen;
paramLenTot+= _len+1;
//printk("%d) len:0x%x\n", i, _len);
param = (tParam*)((char*)(param)+_len+1);
}
return paramLenTot;
}
int checkMsgParam16(unsigned char* buf)
{
int paramLenTot=0;
tSpiMsgData* spiMsg = (tSpiMsgData*)buf;
tDataParam* param = (tDataParam*)spiMsg->params;
int i=0;
for (; i<spiMsg->nParam; ++i)
{
uint16_t _len = param->dataLen;
paramLenTot+= _len+sizeof(param->dataLen);
//printk("%d) len:0x%x\n", i, _len);
param = (tDataParam*)((char*)(param)+_len+sizeof(param->dataLen));
}
return paramLenTot;
}
bool checkMsgFormat(uint8_t* _recv, int len, int* offset)
{
unsigned char* recv = getStartCmdSeq(_recv, len, offset);
if ((recv == NULL)||(recv!=_recv))
{
DEB_PIN_TRIGGER();
IF_WARN_VER(DUMP((char*)_recv, len));
STATSPI_DISALIGN_ERROR();
if (recv == NULL)
return false;
}
tSpiMsg* spiMsg = (tSpiMsg*) recv;
if ((spiMsg->cmd == START_CMD)&&((spiMsg->tcmd & REPLY_FLAG) == 0))
{
int paramLenTot = 0;
if (spiMsg8(spiMsg->tcmd))
paramLenTot = checkMsgParam8(recv);
else
{
DUMP_SPI(_recv, len);
paramLenTot = checkMsgParam16(recv);
}
//INFO_SPI("cmd:0x%x TotLen:%d\n", spiMsg->tcmd, paramLenTot);
char* p = (char*)recv + paramLenTot + sizeof(tSpiHdr);
if (*p == END_CMD)
{
return true;
}else{
WARN("%d] Not found end cmd: 0x%x\n", cmdCorr, *p);
}
}
return false;
}
//#define AVR32_USART_CSR_ITERATION_MASK (UNDERRUN) 0x00000400
//#define AVR32_USART_CSR_OVRE_MASK 0x00000020
//#define AVR32_USART_CSR_RXRDY_MASK 0x00000001
void spi_poll(struct netif* netif) {
ard_netif = netif;
if (startReply)
{
startReply = false;
int offset = 0;
DISABLE_SPI_INT();
if (checkMsgFormat(_receiveBuffer, receivedChars, &offset))
{
state = SPI_CMD_INPROGRESS;
count = receivedChars-offset;
if (count >= CMD_MAX_LEN)
count = CMD_MAX_LEN;
memcpy(buf, &_receiveBuffer[offset], count);
//mark as buffer used
_receiveBuffer[0] = 0;
int err = call_reply_cb(buf, &reply[0]);
if (err != REPLY_NO_ERR)
{
DUMP_SPI(buf, count);
DUMP_SPI(reply, replyCount);
}
receivedChars = 0;
count = 0;
state = SPI_CMD_IDLE;
}
else
{
sendError();
WARN("%d] Check format msg failed!\n", cmdCorr);
IF_WARN_VER(dump((char*)_receiveBuffer, receivedChars));
state = SPI_CMD_IDLE;
count=0;
//mark as buffer used
_receiveBuffer[0] = 0;
}
CLEAR_SPI_INT();
//Enable Spi int to receive a new command
ENABLE_SPI_INT();
//Available for receiving a new spi data
AVAIL_FOR_SPI();
}
#ifdef _SPI_STATS_
if (statSpi.lastError != 0)
{
WARN("%d] Errot=0x%x spiStatus:0x%x\n", cmdCorr, statSpi.lastError, statSpi.status);
statSpi.lastError = 0;
}
#endif
}
inline int spi_slaveReceiveInt(volatile avr32_spi_t *spi)
{
receivedChars=0;
int index = 0;
int err = SPI_OK;
state = SPI_CMD_INPUT;
bool endOfFrame = false;
do {
unsigned int timeout = SPI_TIMEOUT;
err = SPI_OK;
while ((spi->sr & (AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) !=
(AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) {
if ((timeout--)==0) {
err=SPI_ERROR_TIMEOUT;
break;
}
}
//DEB_PIN_TG();
#if 0
#ifdef _SPI_STATS_
if (spi->sr & AVR32_SPI_SR_OVRES_MASK)
{
STATSPI_OVERRIDE_ERROR();
}
#endif
#endif
if (err == SPI_OK) {
_receiveBuffer[index] = (spi->rdr >> AVR32_SPI_RDR_RD_OFFSET) & 0x00ff;
DEB_PIN_UP(2);
if ((index==0) && (_receiveBuffer[index] != START_CMD))
DEB_PIN_TRIGGER();
++index;
++receivedChars;
}else{
#ifdef _SPI_STATS_
STATSPI_TIMEOUT_ERROR();
#endif
break;
}
/* break on buffer overflow */
if (receivedChars >= _BUFFERSIZE) {
err = SPI_ERROR_OVERRUN_AND_MODE_FAULT;
break;
}
if (_receiveBuffer[index - 1] == END_CMD)
{
int8_t numParams = 0;
int idx = PARAM_LEN_POS+1;
bool islen16bit = ((_receiveBuffer[CMD_POS] & DATA_FLAG) == DATA_FLAG);
if (index >= idx)
{
numParams = _receiveBuffer[PARAM_LEN_POS];
while (((index-1) > idx)&&(numParams>0))
{
if (islen16bit)
idx += (_receiveBuffer[idx]<<8) + _receiveBuffer[idx+1]+2;
else
idx += _receiveBuffer[idx]+1;
--numParams;
}
if (((index-1) == idx) && (numParams == 0))
endOfFrame = true;
}
if (!endOfFrame){
WARN("Wrong termination index:%d nParam:%d idx:%d 16bit:%d\n", index, numParams, idx, islen16bit);
#ifdef _DEBUG_
dump((char*)_receiveBuffer, receivedChars);
while(0);
#endif
}
}
} while (!endOfFrame);
return err;
}
#if defined (__GNUC__)
__attribute__((__interrupt__))
#elif defined (__ICCAVR32__)
__interrupt
#endif
static void spi_int_handler(void)
{
volatile avr32_spi_t *spi = ARD_SPI;
DEB_PIN_DN(2);
DISABLE_SPI_INT();
if ((spi->sr & AVR32_SPI_SR_RDRF_MASK) != 0)
{
int err = spi_slaveReceiveInt(ARD_SPI);
if (err == SPI_OK)
{
BUSY_FOR_SPI();
startReply=true;
++cmdCorr;
//maintain disable interrupt to send the reply command
return;
}
}
ENABLE_SPI_INT();
}
inline spi_status_t spi_read8(volatile avr32_spi_t *spi, unsigned char *data)
{
unsigned int timeout = SPI_TIMEOUT;
while ((spi->sr & (AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) !=
(AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
*data = (spi->rdr >> AVR32_SPI_RDR_RD_OFFSET) & 0x00ff;
return SPI_OK;
}
/*!
* \brief Interrupt handler of the External interrupt line "1".
*/
#if __GNUC__
__attribute__((__interrupt__))
#elif __ICCAVR32__
__interrupt
#endif
static void eic_int_handler1(void)
{
eic_clear_interrupt_line(&AVR32_EIC, EXT_INT_LINE1);
startRecvCmdSignal = TRUE;
}
//! Structure holding the configuration parameters of the EIC module.
eic_options_t eic_options[EXT_INT_NB_LINES];
void initExtInt()
{
// Enable edge-triggered interrupt.
eic_options[0].eic_mode = EIC_MODE_EDGE_TRIGGERED;
// Interrupt will trigger on falling edge.
eic_options[0].eic_edge = EIC_EDGE_FALLING_EDGE;
// Initialize in synchronous mode : interrupt is synchronized to the clock
eic_options[0].eic_async = EIC_SYNCH_MODE;
// Set the interrupt line number.
eic_options[0].eic_line = EXT_INT_LINE1;
// Disable all interrupts.
Disable_global_interrupt();
INTC_register_interrupt(&eic_int_handler1, EXT_INT_IRQ_LINE1, AVR32_INTC_INT0);
// Map the interrupt lines to the GPIO pins with the right peripheral functions.
gpio_enable_module_pin(EXT_INT_PIN_LINE1,EXT_INT_FUNCTION_LINE1);
// Init the EIC controller with the options
eic_init(&AVR32_EIC, eic_options, EXT_INT_NB_LINES);
// Enable the chosen lines and their corresponding interrupt feature.
eic_enable_line(&AVR32_EIC, eic_options[0].eic_line);
eic_enable_interrupt_line(&AVR32_EIC, eic_options[0].eic_line);
// Enable all interrupts.
Enable_global_interrupt();
}
int initSpi(void* ctx)
{
volatile avr32_spi_t *spi = &AVR32_SPI0;
gpio_map_t spi_piomap = { \
{AVR32_SPI0_SCK_0_0_PIN, AVR32_SPI0_SCK_0_0_FUNCTION}, \
{AVR32_SPI0_MISO_0_0_PIN, AVR32_SPI0_MISO_0_0_FUNCTION}, \
{AVR32_SPI0_MOSI_0_0_PIN, AVR32_SPI0_MOSI_0_0_FUNCTION}, \
{AVR32_SPI0_NPCS_0_0_PIN, AVR32_SPI0_NPCS_0_0_FUNCTION}, \
};
INFO_INIT("SPI init...\n");
/* Init PIO */
gpio_enable_module(spi_piomap, ARRAY_SIZE(spi_piomap));
spi_options_t spiOptions;
spiOptions.reg = 0;
spiOptions.baudrate = SPI_SLAVE_SPEED;
spiOptions.bits = SPI_BITS;
spiOptions.spck_delay = 0;
spiOptions.trans_delay = 4;
spiOptions.stay_act = 0;
spiOptions.spi_mode = 0;
spiOptions.modfdis = 0;
/* Initialize as slave; bits, spi_mode */
if (spi_initSlave(spi, spiOptions.bits, spiOptions.spi_mode) != SPI_OK)
{
INFO_SPI("SPI initialization failed!");
return 1;
}
spi_status_t status = spi_setupChipReg(spi, &spiOptions, FPBA_HZ);
if (status == SPI_ERROR_ARGUMENT)
WARN("Error configuring SPI\n");
// Disable all interrupts.
Disable_global_interrupt();
// Register the SPI interrupt handler to the interrupt controller.
INTC_register_interrupt((__int_handler)(&spi_int_handler), AVR32_SPI0_IRQ, AVR32_INTC_INT0);
// Enable all interrupts.
Enable_global_interrupt();
ENABLE_SPI_INT();
spi_enable(spi);
#ifdef _SPI_STATS_
initStatSpi();
#endif
init_spi_cmds(ctx);
memset(_receiveBuffer, 0, sizeof(_receiveBuffer));
memset(buf, 0, sizeof(buf));
memset(reply, 0, sizeof(reply));
initMapSockTcp();
set_result(WL_IDLE_STATUS);
init_pBuf();
return 0;
}