/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */ /*This file is prepared for Doxygen automatic documentation generation.*/ /*! \file ********************************************************************* * * \brief FLASHC driver for AVR32 UC3. * * AVR32 Flash Controller driver module. * * - Compiler: IAR EWAVR32 and GNU GCC for AVR32 * - Supported devices: All AVR32 devices with a FLASHC module can be used. * - AppNote: * * \author Atmel Corporation: http://www.atmel.com \n * Support and FAQ: http://support.atmel.no/ * ******************************************************************************/ /* Copyright (c) 2009 Atmel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an Atmel * AVR product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE * */ #include #include #include "compiler.h" #include "flashc.h" /*! \name FLASHC Writable Bit-Field Registers */ //! @{ typedef union { unsigned long fcr; avr32_flashc_fcr_t FCR; } u_avr32_flashc_fcr_t; typedef union { unsigned long fcmd; avr32_flashc_fcmd_t FCMD; } u_avr32_flashc_fcmd_t; //! @} /*! \name Flash Properties */ //! @{ unsigned int flashc_get_flash_size(void) { #if (defined AVR32_FLASHC_300_H_INCLUDED) static const unsigned int FLASH_SIZE[1 << AVR32_FLASHC_PR_FSZ_SIZE] = { 32 << 10, 64 << 10, 128 << 10, 256 << 10, 384 << 10, 512 << 10, 768 << 10, 1024 << 10 }; return FLASH_SIZE[(AVR32_FLASHC.pr & AVR32_FLASHC_PR_FSZ_MASK) >> AVR32_FLASHC_PR_FSZ_OFFSET]; #else static const unsigned int FLASH_SIZE[1 << AVR32_FLASHC_FSR_FSZ_SIZE] = { 32 << 10, 64 << 10, 128 << 10, 256 << 10, 384 << 10, 512 << 10, 768 << 10, 1024 << 10 }; return FLASH_SIZE[(AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_FSZ_MASK) >> AVR32_FLASHC_FSR_FSZ_OFFSET]; #endif } unsigned int flashc_get_page_count(void) { return flashc_get_flash_size() / AVR32_FLASHC_PAGE_SIZE; } unsigned int flashc_get_page_count_per_region(void) { return flashc_get_page_count() / AVR32_FLASHC_REGIONS; } unsigned int flashc_get_page_region(int page_number) { return ((page_number >= 0) ? page_number : flashc_get_page_number()) / flashc_get_page_count_per_region(); } unsigned int flashc_get_region_first_page_number(unsigned int region) { return region * flashc_get_page_count_per_region(); } //! @} /*! \name FLASHC Control */ //! @{ unsigned int flashc_get_wait_state(void) { return (AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_FWS_MASK) >> AVR32_FLASHC_FCR_FWS_OFFSET; } void flashc_set_wait_state(unsigned int wait_state) { u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr}; u_avr32_flashc_fcr.FCR.fws = wait_state; AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr; } Bool flashc_is_ready_int_enabled(void) { return ((AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_FRDY_MASK) != 0); } void flashc_enable_ready_int(Bool enable) { u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr}; u_avr32_flashc_fcr.FCR.frdy = (enable != FALSE); AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr; } Bool flashc_is_lock_error_int_enabled(void) { return ((AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_LOCKE_MASK) != 0); } void flashc_enable_lock_error_int(Bool enable) { u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr}; u_avr32_flashc_fcr.FCR.locke = (enable != FALSE); AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr; } Bool flashc_is_prog_error_int_enabled(void) { return ((AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_PROGE_MASK) != 0); } void flashc_enable_prog_error_int(Bool enable) { u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr}; u_avr32_flashc_fcr.FCR.proge = (enable != FALSE); AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr; } //! @} /*! \name FLASHC Status */ //! @{ Bool flashc_is_ready(void) { return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_FRDY_MASK) != 0); } void flashc_default_wait_until_ready(void) { while (!flashc_is_ready()); } void (*volatile flashc_wait_until_ready)(void) = flashc_default_wait_until_ready; /*! \brief Gets the error status of the FLASHC. * * \return The error status of the FLASHC built up from * \c AVR32_FLASHC_FSR_LOCKE_MASK and \c AVR32_FLASHC_FSR_PROGE_MASK. * * \warning This hardware error status is cleared by all functions reading the * Flash Status Register (FSR). This function is therefore not part of * the driver's API which instead presents \ref flashc_is_lock_error * and \ref flashc_is_programming_error. */ static unsigned int flashc_get_error_status(void) { return AVR32_FLASHC.fsr & (AVR32_FLASHC_FSR_LOCKE_MASK | AVR32_FLASHC_FSR_PROGE_MASK); } //! Sticky error status of the FLASHC. //! This variable is updated by functions that issue FLASHC commands. It //! contains the cumulated FLASHC error status of all the FLASHC commands issued //! by a function. static unsigned int flashc_error_status = 0; Bool flashc_is_lock_error(void) { return ((flashc_error_status & AVR32_FLASHC_FSR_LOCKE_MASK) != 0); } Bool flashc_is_programming_error(void) { return ((flashc_error_status & AVR32_FLASHC_FSR_PROGE_MASK) != 0); } //! @} /*! \name FLASHC Command Control */ //! @{ unsigned int flashc_get_command(void) { return (AVR32_FLASHC.fcmd & AVR32_FLASHC_FCMD_CMD_MASK) >> AVR32_FLASHC_FCMD_CMD_OFFSET; } unsigned int flashc_get_page_number(void) { return (AVR32_FLASHC.fcmd & AVR32_FLASHC_FCMD_PAGEN_MASK) >> AVR32_FLASHC_FCMD_PAGEN_OFFSET; } void flashc_issue_command(unsigned int command, int page_number) { u_avr32_flashc_fcmd_t u_avr32_flashc_fcmd; flashc_wait_until_ready(); u_avr32_flashc_fcmd.fcmd = AVR32_FLASHC.fcmd; u_avr32_flashc_fcmd.FCMD.cmd = command; if (page_number >= 0) u_avr32_flashc_fcmd.FCMD.pagen = page_number; u_avr32_flashc_fcmd.FCMD.key = AVR32_FLASHC_FCMD_KEY_KEY; AVR32_FLASHC.fcmd = u_avr32_flashc_fcmd.fcmd; flashc_error_status = flashc_get_error_status(); flashc_wait_until_ready(); } //! @} /*! \name FLASHC Global Commands */ //! @{ void flashc_no_operation(void) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_NOP, -1); } void flashc_erase_all(void) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EA, -1); } //! @} /*! \name FLASHC Protection Mechanisms */ //! @{ Bool flashc_is_security_bit_active(void) { return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_SECURITY_MASK) != 0); } void flashc_activate_security_bit(void) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_SSB, -1); } unsigned int flashc_get_bootloader_protected_size(void) { unsigned int bootprot = (1 << AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE) - 1 - flashc_read_gp_fuse_bitfield(AVR32_FLASHC_FGPFRLO_BOOTPROT_OFFSET, AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE); return (bootprot) ? AVR32_FLASHC_PAGE_SIZE << bootprot : 0; } unsigned int flashc_set_bootloader_protected_size(unsigned int bootprot_size) { flashc_set_gp_fuse_bitfield(AVR32_FLASHC_FGPFRLO_BOOTPROT_OFFSET, AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE, (1 << AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE) - 1 - ((bootprot_size) ? 32 - clz((((min(max(bootprot_size, AVR32_FLASHC_PAGE_SIZE << 1), AVR32_FLASHC_PAGE_SIZE << ((1 << AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE) - 1)) + AVR32_FLASHC_PAGE_SIZE - 1) / AVR32_FLASHC_PAGE_SIZE) << 1) - 1) - 1 : 0)); return flashc_get_bootloader_protected_size(); } Bool flashc_is_external_privileged_fetch_locked(void) { return (!flashc_read_gp_fuse_bit(AVR32_FLASHC_FGPFRLO_EPFL_OFFSET)); } void flashc_lock_external_privileged_fetch(Bool lock) { flashc_set_gp_fuse_bit(AVR32_FLASHC_FGPFRLO_EPFL_OFFSET, !lock); } Bool flashc_is_page_region_locked(int page_number) { return flashc_is_region_locked(flashc_get_page_region(page_number)); } Bool flashc_is_region_locked(unsigned int region) { return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_LOCK0_MASK << (region & (AVR32_FLASHC_REGIONS - 1))) != 0); } void flashc_lock_page_region(int page_number, Bool lock) { flashc_issue_command((lock) ? AVR32_FLASHC_FCMD_CMD_LP : AVR32_FLASHC_FCMD_CMD_UP, page_number); } void flashc_lock_region(unsigned int region, Bool lock) { flashc_lock_page_region(flashc_get_region_first_page_number(region), lock); } void flashc_lock_all_regions(Bool lock) { unsigned int error_status = 0; unsigned int region = AVR32_FLASHC_REGIONS; while (region) { flashc_lock_region(--region, lock); error_status |= flashc_error_status; } flashc_error_status = error_status; } //! @} /*! \name Access to General-Purpose Fuses */ //! @{ Bool flashc_read_gp_fuse_bit(unsigned int gp_fuse_bit) { return ((flashc_read_all_gp_fuses() & 1ULL << (gp_fuse_bit & 0x3F)) != 0); } U64 flashc_read_gp_fuse_bitfield(unsigned int pos, unsigned int width) { return flashc_read_all_gp_fuses() >> (pos & 0x3F) & ((1ULL << min(width, 64)) - 1); } U8 flashc_read_gp_fuse_byte(unsigned int gp_fuse_byte) { return flashc_read_all_gp_fuses() >> ((gp_fuse_byte & 0x07) << 3); } U64 flashc_read_all_gp_fuses(void) { return AVR32_FLASHC.fgpfrlo | (U64)AVR32_FLASHC.fgpfrhi << 32; } Bool flashc_erase_gp_fuse_bit(unsigned int gp_fuse_bit, Bool check) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EGPB, gp_fuse_bit & 0x3F); return (check) ? flashc_read_gp_fuse_bit(gp_fuse_bit) : TRUE; } Bool flashc_erase_gp_fuse_bitfield(unsigned int pos, unsigned int width, Bool check) { unsigned int error_status = 0; unsigned int gp_fuse_bit; pos &= 0x3F; width = min(width, 64); for (gp_fuse_bit = pos; gp_fuse_bit < pos + width; gp_fuse_bit++) { flashc_erase_gp_fuse_bit(gp_fuse_bit, FALSE); error_status |= flashc_error_status; } flashc_error_status = error_status; return (check) ? (flashc_read_gp_fuse_bitfield(pos, width) == (1ULL << width) - 1) : TRUE; } Bool flashc_erase_gp_fuse_byte(unsigned int gp_fuse_byte, Bool check) { unsigned int error_status; unsigned int current_gp_fuse_byte; U64 value = flashc_read_all_gp_fuses(); flashc_erase_all_gp_fuses(FALSE); error_status = flashc_error_status; for (current_gp_fuse_byte = 0; current_gp_fuse_byte < 8; current_gp_fuse_byte++, value >>= 8) { if (current_gp_fuse_byte != gp_fuse_byte) { flashc_write_gp_fuse_byte(current_gp_fuse_byte, value); error_status |= flashc_error_status; } } flashc_error_status = error_status; return (check) ? (flashc_read_gp_fuse_byte(gp_fuse_byte) == 0xFF) : TRUE; } Bool flashc_erase_all_gp_fuses(Bool check) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EAGPF, -1); return (check) ? (flashc_read_all_gp_fuses() == 0xFFFFFFFFFFFFFFFFULL) : TRUE; } void flashc_write_gp_fuse_bit(unsigned int gp_fuse_bit, Bool value) { if (!value) flashc_issue_command(AVR32_FLASHC_FCMD_CMD_WGPB, gp_fuse_bit & 0x3F); } void flashc_write_gp_fuse_bitfield(unsigned int pos, unsigned int width, U64 value) { unsigned int error_status = 0; unsigned int gp_fuse_bit; pos &= 0x3F; width = min(width, 64); for (gp_fuse_bit = pos; gp_fuse_bit < pos + width; gp_fuse_bit++, value >>= 1) { flashc_write_gp_fuse_bit(gp_fuse_bit, value & 0x01); error_status |= flashc_error_status; } flashc_error_status = error_status; } void flashc_write_gp_fuse_byte(unsigned int gp_fuse_byte, U8 value) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_PGPFB, (gp_fuse_byte & 0x07) | value << 3); } void flashc_write_all_gp_fuses(U64 value) { unsigned int error_status = 0; unsigned int gp_fuse_byte; for (gp_fuse_byte = 0; gp_fuse_byte < 8; gp_fuse_byte++, value >>= 8) { flashc_write_gp_fuse_byte(gp_fuse_byte, value); error_status |= flashc_error_status; } flashc_error_status = error_status; } void flashc_set_gp_fuse_bit(unsigned int gp_fuse_bit, Bool value) { if (value) flashc_erase_gp_fuse_bit(gp_fuse_bit, FALSE); else flashc_write_gp_fuse_bit(gp_fuse_bit, FALSE); } void flashc_set_gp_fuse_bitfield(unsigned int pos, unsigned int width, U64 value) { unsigned int error_status = 0; unsigned int gp_fuse_bit; pos &= 0x3F; width = min(width, 64); for (gp_fuse_bit = pos; gp_fuse_bit < pos + width; gp_fuse_bit++, value >>= 1) { flashc_set_gp_fuse_bit(gp_fuse_bit, value & 0x01); error_status |= flashc_error_status; } flashc_error_status = error_status; } void flashc_set_gp_fuse_byte(unsigned int gp_fuse_byte, U8 value) { unsigned int error_status; switch (value) { case 0xFF: flashc_erase_gp_fuse_byte(gp_fuse_byte, FALSE); break; case 0x00: flashc_write_gp_fuse_byte(gp_fuse_byte, 0x00); break; default: flashc_erase_gp_fuse_byte(gp_fuse_byte, FALSE); error_status = flashc_error_status; flashc_write_gp_fuse_byte(gp_fuse_byte, value); flashc_error_status |= error_status; } } void flashc_set_all_gp_fuses(U64 value) { unsigned int error_status; switch (value) { case 0xFFFFFFFFFFFFFFFFULL: flashc_erase_all_gp_fuses(FALSE); break; case 0x0000000000000000ULL: flashc_write_all_gp_fuses(0x0000000000000000ULL); break; default: flashc_erase_all_gp_fuses(FALSE); error_status = flashc_error_status; flashc_write_all_gp_fuses(value); flashc_error_status |= error_status; } } //! @} /*! \name Access to Flash Pages */ //! @{ void flashc_clear_page_buffer(void) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_CPB, -1); } Bool flashc_is_page_erased(void) { return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_QPRR_MASK) != 0); } Bool flashc_quick_page_read(int page_number) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_QPR, page_number); return flashc_is_page_erased(); } Bool flashc_erase_page(int page_number, Bool check) { Bool page_erased = TRUE; flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EP, page_number); if (check) { unsigned int error_status = flashc_error_status; page_erased = flashc_quick_page_read(-1); flashc_error_status |= error_status; } return page_erased; } Bool flashc_erase_all_pages(Bool check) { Bool all_pages_erased = TRUE; unsigned int error_status = 0; unsigned int page_number = flashc_get_page_count(); while (page_number) { all_pages_erased &= flashc_erase_page(--page_number, check); error_status |= flashc_error_status; } flashc_error_status = error_status; return all_pages_erased; } void flashc_write_page(int page_number) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_WP, page_number); } Bool flashc_quick_user_page_read(void) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_QPRUP, -1); return flashc_is_page_erased(); } Bool flashc_erase_user_page(Bool check) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EUP, -1); return (check) ? flashc_quick_user_page_read() : TRUE; } void flashc_write_user_page(void) { flashc_issue_command(AVR32_FLASHC_FCMD_CMD_WUP, -1); } volatile void *flashc_memset8(volatile void *dst, U8 src, size_t nbytes, Bool erase) { return flashc_memset16(dst, src | (U16)src << 8, nbytes, erase); } volatile void *flashc_memset16(volatile void *dst, U16 src, size_t nbytes, Bool erase) { return flashc_memset32(dst, src | (U32)src << 16, nbytes, erase); } volatile void *flashc_memset32(volatile void *dst, U32 src, size_t nbytes, Bool erase) { return flashc_memset64(dst, src | (U64)src << 32, nbytes, erase); } volatile void *flashc_memset64(volatile void *dst, U64 src, size_t nbytes, Bool erase) { // Use aggregated pointers to have several alignments available for a same address. UnionCVPtr flash_array_end; UnionVPtr dest; Union64 source = {0}; StructCVPtr dest_end; UnionCVPtr flash_page_source_end; Bool incomplete_flash_page_end; Union64 flash_dword; UnionVPtr tmp; unsigned int error_status = 0; unsigned int i; // Reformat arguments. flash_array_end.u8ptr = AVR32_FLASH + flashc_get_flash_size(); dest.u8ptr = dst; for (i = (Get_align((U32)dest.u8ptr, sizeof(U64)) - 1) & (sizeof(U64) - 1); src; i = (i - 1) & (sizeof(U64) - 1)) { source.u8[i] = src; src >>= 8; } dest_end.u8ptr = dest.u8ptr + nbytes; // If destination is outside flash, go to next flash page if any. if (dest.u8ptr < AVR32_FLASH) { dest.u8ptr = AVR32_FLASH; } else if (flash_array_end.u8ptr <= dest.u8ptr && dest.u8ptr < AVR32_FLASHC_USER_PAGE) { dest.u8ptr = AVR32_FLASHC_USER_PAGE; } // If end of destination is outside flash, move it to the end of the previous flash page if any. if (dest_end.u8ptr > AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE) { dest_end.u8ptr = AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE; } else if (AVR32_FLASHC_USER_PAGE >= dest_end.u8ptr && dest_end.u8ptr > flash_array_end.u8ptr) { dest_end.u8ptr = flash_array_end.u8ptr; } // Align each end of destination pointer with its natural boundary. dest_end.u16ptr = (U16 *)Align_down((U32)dest_end.u8ptr, sizeof(U16)); dest_end.u32ptr = (U32 *)Align_down((U32)dest_end.u16ptr, sizeof(U32)); dest_end.u64ptr = (U64 *)Align_down((U32)dest_end.u32ptr, sizeof(U64)); // While end of destination is not reached... while (dest.u8ptr < dest_end.u8ptr) { // Clear the page buffer in order to prepare data for a flash page write. flashc_clear_page_buffer(); error_status |= flashc_error_status; // Determine where the source data will end in the current flash page. flash_page_source_end.u64ptr = (U64 *)min((U32)dest_end.u64ptr, Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) + AVR32_FLASHC_PAGE_SIZE); // Determine if the current destination page has an incomplete end. incomplete_flash_page_end = (Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) >= Align_down((U32)dest_end.u8ptr, AVR32_FLASHC_PAGE_SIZE)); // Use a flash double-word buffer to manage unaligned accesses. flash_dword.u64 = source.u64; // If destination does not point to the beginning of the current flash page... if (!Test_align((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE)) { // Fill the beginning of the page buffer with the current flash page data. // This is required by the hardware, even if page erase is not requested, // in order to be able to write successfully to erased parts of flash // pages that have already been written to. for (tmp.u8ptr = (U8 *)Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE); tmp.u64ptr < (U64 *)Align_down((U32)dest.u8ptr, sizeof(U64)); tmp.u64ptr++) *tmp.u64ptr = *tmp.u64ptr; // If destination is not 64-bit aligned... if (!Test_align((U32)dest.u8ptr, sizeof(U64))) { // Fill the beginning of the flash double-word buffer with the current // flash page data. // This is required by the hardware, even if page erase is not // requested, in order to be able to write successfully to erased parts // of flash pages that have already been written to. for (i = 0; i < Get_align((U32)dest.u8ptr, sizeof(U64)); i++) flash_dword.u8[i] = *tmp.u8ptr++; // Align the destination pointer with its 64-bit boundary. dest.u64ptr = (U64 *)Align_down((U32)dest.u8ptr, sizeof(U64)); // If the current destination double-word is not the last one... if (dest.u64ptr < dest_end.u64ptr) { // Write the flash double-word buffer to the page buffer and reinitialize it. *dest.u64ptr++ = flash_dword.u64; flash_dword.u64 = source.u64; } } } // Write the source data to the page buffer with 64-bit alignment. for (i = flash_page_source_end.u64ptr - dest.u64ptr; i; i--) *dest.u64ptr++ = source.u64; // If the current destination page has an incomplete end... if (incomplete_flash_page_end) { // This is required by the hardware, even if page erase is not requested, // in order to be able to write successfully to erased parts of flash // pages that have already been written to. { tmp.u8ptr = (volatile U8 *)dest_end.u8ptr; // If end of destination is not 64-bit aligned... if (!Test_align((U32)dest_end.u8ptr, sizeof(U64))) { // Fill the end of the flash double-word buffer with the current flash page data. for (i = Get_align((U32)dest_end.u8ptr, sizeof(U64)); i < sizeof(U64); i++) flash_dword.u8[i] = *tmp.u8ptr++; // Write the flash double-word buffer to the page buffer. *dest.u64ptr++ = flash_dword.u64; } // Fill the end of the page buffer with the current flash page data. for (; !Test_align((U32)tmp.u64ptr, AVR32_FLASHC_PAGE_SIZE); tmp.u64ptr++) *tmp.u64ptr = *tmp.u64ptr; } } // If the current flash page is in the flash array... if (dest.u8ptr <= AVR32_FLASHC_USER_PAGE) { // Erase the current page if requested and write it from the page buffer. if (erase) { flashc_erase_page(-1, FALSE); error_status |= flashc_error_status; } flashc_write_page(-1); error_status |= flashc_error_status; // If the end of the flash array is reached, go to the User page. if (dest.u8ptr >= flash_array_end.u8ptr) dest.u8ptr = AVR32_FLASHC_USER_PAGE; } // If the current flash page is the User page... else { // Erase the User page if requested and write it from the page buffer. if (erase) { flashc_erase_user_page(FALSE); error_status |= flashc_error_status; } flashc_write_user_page(); error_status |= flashc_error_status; } } // Update the FLASHC error status. flashc_error_status = error_status; // Return the initial destination pointer as the standard memset function does. return dst; } volatile void *flashc_memcpy(volatile void *dst, const void *src, size_t nbytes, Bool erase) { // Use aggregated pointers to have several alignments available for a same address. UnionCVPtr flash_array_end; UnionVPtr dest; UnionCPtr source; StructCVPtr dest_end; UnionCVPtr flash_page_source_end; Bool incomplete_flash_page_end; Union64 flash_dword; Bool flash_dword_pending = FALSE; UnionVPtr tmp; unsigned int error_status = 0; unsigned int i, j; // Reformat arguments. flash_array_end.u8ptr = AVR32_FLASH + flashc_get_flash_size(); dest.u8ptr = dst; source.u8ptr = src; dest_end.u8ptr = dest.u8ptr + nbytes; // If destination is outside flash, go to next flash page if any. if (dest.u8ptr < AVR32_FLASH) { source.u8ptr += AVR32_FLASH - dest.u8ptr; dest.u8ptr = AVR32_FLASH; } else if (flash_array_end.u8ptr <= dest.u8ptr && dest.u8ptr < AVR32_FLASHC_USER_PAGE) { source.u8ptr += AVR32_FLASHC_USER_PAGE - dest.u8ptr; dest.u8ptr = AVR32_FLASHC_USER_PAGE; } // If end of destination is outside flash, move it to the end of the previous flash page if any. if (dest_end.u8ptr > AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE) { dest_end.u8ptr = AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE; } else if (AVR32_FLASHC_USER_PAGE >= dest_end.u8ptr && dest_end.u8ptr > flash_array_end.u8ptr) { dest_end.u8ptr = flash_array_end.u8ptr; } // Align each end of destination pointer with its natural boundary. dest_end.u16ptr = (U16 *)Align_down((U32)dest_end.u8ptr, sizeof(U16)); dest_end.u32ptr = (U32 *)Align_down((U32)dest_end.u16ptr, sizeof(U32)); dest_end.u64ptr = (U64 *)Align_down((U32)dest_end.u32ptr, sizeof(U64)); // While end of destination is not reached... while (dest.u8ptr < dest_end.u8ptr) { // Clear the page buffer in order to prepare data for a flash page write. flashc_clear_page_buffer(); error_status |= flashc_error_status; // Determine where the source data will end in the current flash page. flash_page_source_end.u64ptr = (U64 *)min((U32)dest_end.u64ptr, Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) + AVR32_FLASHC_PAGE_SIZE); // Determine if the current destination page has an incomplete end. incomplete_flash_page_end = (Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) >= Align_down((U32)dest_end.u8ptr, AVR32_FLASHC_PAGE_SIZE)); // If destination does not point to the beginning of the current flash page... if (!Test_align((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE)) { // Fill the beginning of the page buffer with the current flash page data. // This is required by the hardware, even if page erase is not requested, // in order to be able to write successfully to erased parts of flash // pages that have already been written to. for (tmp.u8ptr = (U8 *)Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE); tmp.u64ptr < (U64 *)Align_down((U32)dest.u8ptr, sizeof(U64)); tmp.u64ptr++) *tmp.u64ptr = *tmp.u64ptr; // If destination is not 64-bit aligned... if (!Test_align((U32)dest.u8ptr, sizeof(U64))) { // Fill the beginning of the flash double-word buffer with the current // flash page data. // This is required by the hardware, even if page erase is not // requested, in order to be able to write successfully to erased parts // of flash pages that have already been written to. for (i = 0; i < Get_align((U32)dest.u8ptr, sizeof(U64)); i++) flash_dword.u8[i] = *tmp.u8ptr++; // Fill the end of the flash double-word buffer with the source data. for (; i < sizeof(U64); i++) flash_dword.u8[i] = *source.u8ptr++; // Align the destination pointer with its 64-bit boundary. dest.u64ptr = (U64 *)Align_down((U32)dest.u8ptr, sizeof(U64)); // If the current destination double-word is not the last one... if (dest.u64ptr < dest_end.u64ptr) { // Write the flash double-word buffer to the page buffer. *dest.u64ptr++ = flash_dword.u64; } // If the current destination double-word is the last one, the flash // double-word buffer must be kept for later. else flash_dword_pending = TRUE; } } // Read the source data with the maximal possible alignment and write it to // the page buffer with 64-bit alignment. switch (Get_align((U32)source.u8ptr, sizeof(U32))) { case 0: for (i = flash_page_source_end.u64ptr - dest.u64ptr; i; i--) *dest.u64ptr++ = *source.u64ptr++; break; case sizeof(U16): for (i = flash_page_source_end.u64ptr - dest.u64ptr; i; i--) { for (j = 0; j < sizeof(U64) / sizeof(U16); j++) flash_dword.u16[j] = *source.u16ptr++; *dest.u64ptr++ = flash_dword.u64; } break; default: for (i = flash_page_source_end.u64ptr - dest.u64ptr; i; i--) { for (j = 0; j < sizeof(U64); j++) flash_dword.u8[j] = *source.u8ptr++; *dest.u64ptr++ = flash_dword.u64; } } // If the current destination page has an incomplete end... if (incomplete_flash_page_end) { // If the flash double-word buffer is in use, do not initialize it. if (flash_dword_pending) i = Get_align((U32)dest_end.u8ptr, sizeof(U64)); // If the flash double-word buffer is free... else { // Fill the beginning of the flash double-word buffer with the source data. for (i = 0; i < Get_align((U32)dest_end.u8ptr, sizeof(U64)); i++) flash_dword.u8[i] = *source.u8ptr++; } // This is required by the hardware, even if page erase is not requested, // in order to be able to write successfully to erased parts of flash // pages that have already been written to. { tmp.u8ptr = (volatile U8 *)dest_end.u8ptr; // If end of destination is not 64-bit aligned... if (!Test_align((U32)dest_end.u8ptr, sizeof(U64))) { // Fill the end of the flash double-word buffer with the current flash page data. for (; i < sizeof(U64); i++) flash_dword.u8[i] = *tmp.u8ptr++; // Write the flash double-word buffer to the page buffer. *dest.u64ptr++ = flash_dword.u64; } // Fill the end of the page buffer with the current flash page data. for (; !Test_align((U32)tmp.u64ptr, AVR32_FLASHC_PAGE_SIZE); tmp.u64ptr++) *tmp.u64ptr = *tmp.u64ptr; } } // If the current flash page is in the flash array... if (dest.u8ptr <= AVR32_FLASHC_USER_PAGE) { // Erase the current page if requested and write it from the page buffer. if (erase) { flashc_erase_page(-1, FALSE); error_status |= flashc_error_status; } flashc_write_page(-1); error_status |= flashc_error_status; // If the end of the flash array is reached, go to the User page. if (dest.u8ptr >= flash_array_end.u8ptr) { source.u8ptr += AVR32_FLASHC_USER_PAGE - dest.u8ptr; dest.u8ptr = AVR32_FLASHC_USER_PAGE; } } // If the current flash page is the User page... else { // Erase the User page if requested and write it from the page buffer. if (erase) { flashc_erase_user_page(FALSE); error_status |= flashc_error_status; } flashc_write_user_page(); error_status |= flashc_error_status; } } // Update the FLASHC error status. flashc_error_status = error_status; // Return the initial destination pointer as the standard memcpy function does. return dst; } #if UC3C void flashc_set_flash_waitstate_and_readmode(unsigned long cpu_f_hz) { //! Device-specific data #undef AVR32_FLASHC_FWS_0_MAX_FREQ #undef AVR32_FLASHC_FWS_1_MAX_FREQ #undef AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ #undef AVR32_FLASHC_HSEN_FWS_1_MAX_FREQ #define AVR32_FLASHC_FWS_0_MAX_FREQ 33000000 #define AVR32_FLASHC_FWS_1_MAX_FREQ 66000000 #define AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ 33000000 #define AVR32_FLASHC_HSEN_FWS_1_MAX_FREQ 72000000 // These defines are missing from or wrong in the toolchain header files uc3cxxx.h // Put a Bugzilla if(cpu_f_hz > AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ) // > 33MHz { // Set a wait-state flashc_set_wait_state(1); if(cpu_f_hz <= AVR32_FLASHC_FWS_1_MAX_FREQ) // <= 66MHz and >33Mhz { // Disable the high-speed read mode. flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1); } else // > 66Mhz { // Enable the high-speed read mode. flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSEN, -1); } } else // <= 33 MHz { // Disable wait-state flashc_set_wait_state(0); // Disable the high-speed read mode. flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1); } } #endif // UC3C device-specific implementation //! @}