weatherstation/firmware/libraries/WiFi/extras/wifiHD/src/SOFTWARE_FRAMEWORK/COMPONENTS/MEMORY/DATA_FLASH/AT45DBX/at45dbx.c
Kai Lauterbach 0cf171093b Libraries
2022-05-09 09:34:49 +02:00

654 lines
21 KiB
C
Executable file

/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief Management of the AT45DBX data flash controller through SPI.
*
* This file manages the accesses to the AT45DBX data flash components.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an SPI module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
//_____ I N C L U D E S ___________________________________________________
#include "conf_access.h"
#if AT45DBX_MEM == ENABLE
#include "compiler.h"
#include "board.h"
#include "gpio.h"
#include "spi.h"
#include "conf_at45dbx.h"
#include "at45dbx.h"
#if AT45DBX_MEM_CNT > 4
#error AT45DBX_MEM_CNT must not exceed 4
#endif
//_____ D E F I N I T I O N S ______________________________________________
/*! \name AT45DBX Group A Commands
*/
//! @{
#define AT45DBX_CMDA_RD_PAGE 0xD2 //!< Main Memory Page Read (Serial/8-bit Mode).
#define AT45DBX_CMDA_RD_ARRAY_LEG 0xE8 //!< Continuous Array Read, Legacy Command (Serial/8-bit Mode).
#define AT45DBX_CMDA_RD_ARRAY_LF_SM 0x03 //!< Continuous Array Read, Low-Frequency Mode (Serial Mode).
#define AT45DBX_CMDA_RD_ARRAY_AF_SM 0x0B //!< Continuous Array Read, Any-Frequency Mode (Serial Mode).
#define AT45DBX_CMDA_RD_SECTOR_PROT_REG 0x32 //!< Read Sector Protection Register (Serial/8-bit Mode).
#define AT45DBX_CMDA_RD_SECTOR_LKDN_REG 0x35 //!< Read Sector Lockdown Register (Serial/8-bit Mode).
#define AT45DBX_CMDA_RD_SECURITY_REG 0x77 //!< Read Security Register (Serial/8-bit Mode).
//! @}
/*! \name AT45DBX Group B Commands
*/
//! @{
#define AT45DBX_CMDB_ER_PAGE 0x81 //!< Page Erase (Serial/8-bit Mode).
#define AT45DBX_CMDB_ER_BLOCK 0x50 //!< Block Erase (Serial/8-bit Mode).
#define AT45DBX_CMDB_ER_SECTOR 0x7C //!< Sector Erase (Serial/8-bit Mode).
#define AT45DBX_CMDB_ER_CHIP 0xC794809A //!< Chip Erase (Serial/8-bit Mode).
#define AT45DBX_CMDB_XFR_PAGE_TO_BUF1 0x53 //!< Main Memory Page to Buffer 1 Transfer (Serial/8-bit Mode).
#define AT45DBX_CMDB_XFR_PAGE_TO_BUF2 0x55 //!< Main Memory Page to Buffer 2 Transfer (Serial/8-bit Mode).
#define AT45DBX_CMDB_CMP_PAGE_TO_BUF1 0x60 //!< Main Memory Page to Buffer 1 Compare (Serial/8-bit Mode).
#define AT45DBX_CMDB_CMP_PAGE_TO_BUF2 0x61 //!< Main Memory Page to Buffer 2 Compare (Serial/8-bit Mode).
#define AT45DBX_CMDB_PR_BUF1_TO_PAGE_ER 0x83 //!< Buffer 1 to Main Memory Page Program with Built-in Erase (Serial/8-bit Mode).
#define AT45DBX_CMDB_PR_BUF2_TO_PAGE_ER 0x86 //!< Buffer 2 to Main Memory Page Program with Built-in Erase (Serial/8-bit Mode).
#define AT45DBX_CMDB_PR_BUF1_TO_PAGE 0x88 //!< Buffer 1 to Main Memory Page Program without Built-in Erase (Serial/8-bit Mode).
#define AT45DBX_CMDB_PR_BUF2_TO_PAGE 0x89 //!< Buffer 2 to Main Memory Page Program without Built-in Erase (Serial/8-bit Mode).
#define AT45DBX_CMDB_PR_PAGE_TH_BUF1 0x82 //!< Main Memory Page Program through Buffer 1 (Serial/8-bit Mode).
#define AT45DBX_CMDB_PR_PAGE_TH_BUF2 0x85 //!< Main Memory Page Program through Buffer 2 (Serial/8-bit Mode).
#define AT45DBX_CMDB_RWR_PAGE_TH_BUF1 0x58 //!< Auto Page Rewrite through Buffer 1 (Serial/8-bit Mode).
#define AT45DBX_CMDB_RWR_PAGE_TH_BUF2 0x59 //!< Auto Page Rewrite through Buffer 2 (Serial/8-bit Mode).
//! @}
/*! \name AT45DBX Group C Commands
*/
//! @{
#define AT45DBX_CMDC_RD_BUF1_LF_SM 0xD1 //!< Buffer 1 Read, Low-Frequency Mode (Serial Mode).
#define AT45DBX_CMDC_RD_BUF2_LF_SM 0xD3 //!< Buffer 2 Read, Low-Frequency Mode (Serial Mode).
#define AT45DBX_CMDC_RD_BUF1_AF_SM 0xD4 //!< Buffer 1 Read, Any-Frequency Mode (Serial Mode).
#define AT45DBX_CMDC_RD_BUF2_AF_SM 0xD6 //!< Buffer 2 Read, Any-Frequency Mode (Serial Mode).
#define AT45DBX_CMDC_RD_BUF1_AF_8M 0x54 //!< Buffer 1 Read, Any-Frequency Mode (8-bit Mode).
#define AT45DBX_CMDC_RD_BUF2_AF_8M 0x56 //!< Buffer 2 Read, Any-Frequency Mode (8-bit Mode).
#define AT45DBX_CMDC_WR_BUF1 0x84 //!< Buffer 1 Write (Serial/8-bit Mode).
#define AT45DBX_CMDC_WR_BUF2 0x87 //!< Buffer 2 Write (Serial/8-bit Mode).
#define AT45DBX_CMDC_RD_STATUS_REG 0xD7 //!< Status Register Read (Serial/8-bit Mode).
#define AT45DBX_CMDC_RD_MNFCT_DEV_ID_SM 0x9F //!< Manufacturer and Device ID Read (Serial Mode).
//! @}
/*! \name AT45DBX Group D Commands
*/
//! @{
#define AT45DBX_CMDD_EN_SECTOR_PROT 0x3D2A7FA9 //!< Enable Sector Protection (Serial/8-bit Mode).
#define AT45DBX_CMDD_DIS_SECTOR_PROT 0x3D2A7F9A //!< Disable Sector Protection (Serial/8-bit Mode).
#define AT45DBX_CMDD_ER_SECTOR_PROT_REG 0x3D2A7FCF //!< Erase Sector Protection Register (Serial/8-bit Mode).
#define AT45DBX_CMDD_PR_SECTOR_PROT_REG 0x3D2A7FFC //!< Program Sector Protection Register (Serial/8-bit Mode).
#define AT45DBX_CMDD_LKDN_SECTOR 0x3D2A7F30 //!< Sector Lockdown (Serial/8-bit Mode).
#define AT45DBX_CMDD_PR_SECURITY_REG 0x9B000000 //!< Program Security Register (Serial/8-bit Mode).
#define AT45DBX_CMDD_PR_CONF_REG 0x3D2A80A6 //!< Program Configuration Register (Serial/8-bit Mode).
#define AT45DBX_CMDD_DEEP_PWR_DN 0xB9 //!< Deep Power-down (Serial/8-bit Mode).
#define AT45DBX_CMDD_RSM_DEEP_PWR_DN 0xAB //!< Resume from Deep Power-down (Serial/8-bit Mode).
//! @}
/*! \name Bit-Masks and Values for the Status Register
*/
//! @{
#define AT45DBX_MSK_BUSY 0x80 //!< Busy status bit-mask.
#define AT45DBX_BUSY 0x00 //!< Busy status value (0x00 when busy, 0x80 when ready).
#define AT45DBX_MSK_DENSITY 0x3C //!< Device density bit-mask.
//! @}
#if AT45DBX_MEM_SIZE == AT45DBX_1MB
/*! \name AT45DB081 Memories
*/
//! @{
#define AT45DBX_DENSITY 0x24 //!< Device density value.
#define AT45DBX_BYTE_ADDR_BITS 9 //!< Address bits for byte position within buffer.
//! @}
#elif AT45DBX_MEM_SIZE == AT45DBX_2MB
/*! \name AT45DB161 Memories
*/
//! @{
#define AT45DBX_DENSITY 0x2C //!< Device density value.
#define AT45DBX_BYTE_ADDR_BITS 10 //!< Address bits for byte position within buffer.
//! @}
#elif AT45DBX_MEM_SIZE == AT45DBX_4MB
/*! \name AT45DB321 Memories
*/
//! @{
#define AT45DBX_DENSITY 0x34 //!< Device density value.
#define AT45DBX_BYTE_ADDR_BITS 10 //!< Address bits for byte position within buffer.
//! @}
#elif AT45DBX_MEM_SIZE == AT45DBX_8MB
/*! \name AT45DB642 Memories
*/
//! @{
#define AT45DBX_DENSITY 0x3C //!< Device density value.
#define AT45DBX_BYTE_ADDR_BITS 11 //!< Address bits for byte position within buffer.
//! @}
#else
#error AT45DBX_MEM_SIZE is not defined to a supported value
#endif
//! Address bits for page selection.
#define AT45DBX_PAGE_ADDR_BITS (AT45DBX_MEM_SIZE - AT45DBX_PAGE_BITS)
//! Number of bits for addresses within pages.
#define AT45DBX_PAGE_BITS (AT45DBX_BYTE_ADDR_BITS - 1)
//! Page size in bytes.
#define AT45DBX_PAGE_SIZE (1 << AT45DBX_PAGE_BITS)
//! Bit-mask for byte position within buffer in \ref gl_ptr_mem.
#define AT45DBX_MSK_PTR_BYTE ((1 << AT45DBX_PAGE_BITS) - 1)
//! Bit-mask for page selection in \ref gl_ptr_mem.
#define AT45DBX_MSK_PTR_PAGE (((1 << AT45DBX_PAGE_ADDR_BITS) - 1) << AT45DBX_PAGE_BITS)
//! Bit-mask for byte position within sector in \ref gl_ptr_mem.
#define AT45DBX_MSK_PTR_SECTOR ((1 << AT45DBX_SECTOR_BITS) - 1)
/*! \brief Sends a dummy byte through SPI.
*/
#define spi_write_dummy() spi_write(AT45DBX_SPI, 0xFF)
//! Boolean indicating whether memory is in busy state.
static Bool at45dbx_busy;
//! Memory data pointer.
static U32 gl_ptr_mem;
//! Sector buffer.
static U8 sector_buf[AT45DBX_SECTOR_SIZE];
/*! \name Control Functions
*/
//! @{
Bool at45dbx_init(spi_options_t spiOptions, unsigned int pba_hz)
{
// Setup SPI registers according to spiOptions.
for (spiOptions.reg = AT45DBX_SPI_FIRST_NPCS;
spiOptions.reg < AT45DBX_SPI_FIRST_NPCS + AT45DBX_MEM_CNT;
spiOptions.reg++)
{
if (spi_setupChipReg(AT45DBX_SPI, &spiOptions, pba_hz) != SPI_OK) return KO;
}
// Memory ready.
at45dbx_busy = FALSE;
return OK;
}
/*! \brief Selects or unselects a DF memory.
*
* \param memidx Memory ID of DF to select or unselect.
* \param bSelect Boolean indicating whether the DF memory has to be selected.
*/
static void at45dbx_chipselect_df(U8 memidx, Bool bSelect)
{
if (bSelect)
{
// Select SPI chip.
spi_selectChip(AT45DBX_SPI, AT45DBX_SPI_FIRST_NPCS + memidx);
}
else
{
// Unselect SPI chip.
spi_unselectChip(AT45DBX_SPI, AT45DBX_SPI_FIRST_NPCS + memidx);
}
}
Bool at45dbx_mem_check(void)
{
U8 df;
U16 status = 0;
// DF memory check.
for (df = 0; df < AT45DBX_MEM_CNT; df++)
{
// Select the DF memory to check.
at45dbx_chipselect_df(df, TRUE);
// Send the Status Register Read command.
spi_write(AT45DBX_SPI, AT45DBX_CMDC_RD_STATUS_REG);
// Send a dummy byte to read the status register.
spi_write_dummy();
spi_read(AT45DBX_SPI, &status);
// Unselect the checked DF memory.
at45dbx_chipselect_df(df, FALSE);
// Unexpected device density value.
if ((status & AT45DBX_MSK_DENSITY) < AT45DBX_DENSITY) return KO;
}
return OK;
}
/*! \brief Waits until the DF is ready.
*/
static void at45dbx_wait_ready(void)
{
U16 status;
// Select the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, TRUE);
// Send the Status Register Read command.
spi_write(AT45DBX_SPI, AT45DBX_CMDC_RD_STATUS_REG);
// Read the status register until the DF is ready.
do
{
// Send a dummy byte to read the status register.
spi_write_dummy();
spi_read(AT45DBX_SPI, &status);
} while ((status & AT45DBX_MSK_BUSY) == AT45DBX_BUSY);
// Unselect the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, FALSE);
}
Bool at45dbx_read_open(U32 sector)
{
U32 addr;
// Set the global memory pointer to a byte address.
gl_ptr_mem = sector << AT45DBX_SECTOR_BITS; // gl_ptr_mem = sector * AT45DBX_SECTOR_SIZE.
// If the DF memory is busy, wait until it's ready.
if (at45dbx_busy) at45dbx_wait_ready();
at45dbx_busy = FALSE;
// Select the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, TRUE);
// Initiate a page read at a given sector.
// Send the Main Memory Page Read command.
spi_write(AT45DBX_SPI, AT45DBX_CMDA_RD_PAGE);
// Send the three address bytes, which comprise:
// - (24 - (AT45DBX_PAGE_ADDR_BITS + AT45DBX_BYTE_ADDR_BITS)) reserved bits;
// - then AT45DBX_PAGE_ADDR_BITS bits specifying the page in main memory to be read;
// - then AT45DBX_BYTE_ADDR_BITS bits specifying the starting byte address within that page.
// NOTE: The bits of gl_ptr_mem above the AT45DBX_MEM_SIZE bits are useless for the local
// DF addressing. They are used for DF discrimination when there are several DFs.
addr = (Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_PAGE) << AT45DBX_BYTE_ADDR_BITS) |
Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_BYTE);
spi_write(AT45DBX_SPI, LSB2W(addr));
spi_write(AT45DBX_SPI, LSB1W(addr));
spi_write(AT45DBX_SPI, LSB0W(addr));
// Send 32 don't care clock cycles to initialize the read operation.
spi_write_dummy();
spi_write_dummy();
spi_write_dummy();
spi_write_dummy();
return OK;
}
void at45dbx_read_close(void)
{
// Unselect the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, FALSE);
// Memory ready.
at45dbx_busy = FALSE;
}
Bool at45dbx_write_open(U32 sector)
{
U32 addr;
// Set the global memory pointer to a byte address.
gl_ptr_mem = sector << AT45DBX_SECTOR_BITS; // gl_ptr_mem = sector * AT45DBX_SECTOR_SIZE.
// If the DF memory is busy, wait until it's ready.
if (at45dbx_busy) at45dbx_wait_ready();
at45dbx_busy = FALSE;
#if AT45DBX_PAGE_SIZE > AT45DBX_SECTOR_SIZE
// Select the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, TRUE);
// Transfer the content of the current page to buffer 1.
// Send the Main Memory Page to Buffer 1 Transfer command.
spi_write(AT45DBX_SPI, AT45DBX_CMDB_XFR_PAGE_TO_BUF1);
// Send the three address bytes, which comprise:
// - (24 - (AT45DBX_PAGE_ADDR_BITS + AT45DBX_BYTE_ADDR_BITS)) reserved bits;
// - then AT45DBX_PAGE_ADDR_BITS bits specifying the page in main memory to be read;
// - then AT45DBX_BYTE_ADDR_BITS don't care bits.
// NOTE: The bits of gl_ptr_mem above the AT45DBX_MEM_SIZE bits are useless for the local
// DF addressing. They are used for DF discrimination when there are several DFs.
addr = Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_PAGE) << AT45DBX_BYTE_ADDR_BITS;
spi_write(AT45DBX_SPI, LSB2W(addr));
spi_write(AT45DBX_SPI, LSB1W(addr));
spi_write(AT45DBX_SPI, LSB0W(addr));
// Unselect the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, FALSE);
// Wait for end of page transfer.
at45dbx_wait_ready();
#endif
// Select the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, TRUE);
// Initiate a page write at a given sector.
// Send the Main Memory Page Program through Buffer 1 command.
spi_write(AT45DBX_SPI, AT45DBX_CMDB_PR_PAGE_TH_BUF1);
// Send the three address bytes, which comprise:
// - (24 - (AT45DBX_PAGE_ADDR_BITS + AT45DBX_BYTE_ADDR_BITS)) reserved bits;
// - then AT45DBX_PAGE_ADDR_BITS bits specifying the page in main memory to be written;
// - then AT45DBX_BYTE_ADDR_BITS bits specifying the starting byte address within that page.
// NOTE: The bits of gl_ptr_mem above the AT45DBX_MEM_SIZE bits are useless for the local
// DF addressing. They are used for DF discrimination when there are several DFs.
addr = (Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_PAGE) << AT45DBX_BYTE_ADDR_BITS) |
Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_BYTE);
spi_write(AT45DBX_SPI, LSB2W(addr));
spi_write(AT45DBX_SPI, LSB1W(addr));
spi_write(AT45DBX_SPI, LSB0W(addr));
return OK;
}
void at45dbx_write_close(void)
{
// While end of logical sector not reached, zero-fill remaining memory bytes.
while (Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_SECTOR))
{
spi_write(AT45DBX_SPI, 0x00);
gl_ptr_mem++;
}
// Unselect the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, FALSE);
// Memory busy.
at45dbx_busy = TRUE;
}
//! @}
/*! \name Single-Byte Access Functions
*/
//! @{
U8 at45dbx_read_byte(void)
{
U16 data;
// Memory busy.
if (at45dbx_busy)
{
// Being here, we know that we previously finished a page read.
// => We have to access the next page.
// Memory ready.
at45dbx_busy = FALSE;
// Eventually select the next DF and open the next page.
// NOTE: at45dbx_read_open input parameter is a sector.
at45dbx_read_open(gl_ptr_mem >> AT45DBX_SECTOR_BITS); // gl_ptr_mem / AT45DBX_SECTOR_SIZE.
}
// Send a dummy byte to read the next data byte.
spi_write_dummy();
spi_read(AT45DBX_SPI, &data);
gl_ptr_mem++;
// If end of page reached,
if (!Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_BYTE))
{
// unselect the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, FALSE);
// Memory busy.
at45dbx_busy = TRUE;
}
return data;
}
Bool at45dbx_write_byte(U8 b)
{
// Memory busy.
if (at45dbx_busy)
{
// Being here, we know that we previously launched a page programming.
// => We have to access the next page.
// Eventually select the next DF and open the next page.
// NOTE: at45dbx_write_open input parameter is a sector.
at45dbx_write_open(gl_ptr_mem >> AT45DBX_SECTOR_BITS); // gl_ptr_mem / AT45DBX_SECTOR_SIZE.
}
// Write the next data byte.
spi_write(AT45DBX_SPI, b);
gl_ptr_mem++;
// If end of page reached,
if (!Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_BYTE))
{
// unselect the DF memory gl_ptr_mem points to in order to program the page.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, FALSE);
// Memory busy.
at45dbx_busy = TRUE;
}
return OK;
}
//! @}
/*! \name Multiple-Sector Access Functions
*/
//! @{
Bool at45dbx_read_multiple_sector(U16 nb_sector)
{
while (nb_sector--)
{
// Read the next sector.
at45dbx_read_sector_2_ram(sector_buf);
at45dbx_read_multiple_sector_callback(sector_buf);
}
return OK;
}
Bool at45dbx_write_multiple_sector(U16 nb_sector)
{
while (nb_sector--)
{
// Write the next sector.
at45dbx_write_multiple_sector_callback(sector_buf);
at45dbx_write_sector_from_ram(sector_buf);
}
return OK;
}
//! @}
/*! \name Single-Sector Access Functions
*/
//! @{
Bool at45dbx_read_sector_2_ram(void *ram)
{
U8 *_ram = ram;
U16 i;
U16 data;
// Memory busy.
if (at45dbx_busy)
{
// Being here, we know that we previously finished a page read.
// => We have to access the next page.
// Memory ready.
at45dbx_busy = FALSE;
// Eventually select the next DF and open the next page.
// NOTE: at45dbx_read_open input parameter is a sector.
at45dbx_read_open(gl_ptr_mem >> AT45DBX_SECTOR_BITS); // gl_ptr_mem / AT45DBX_SECTOR_SIZE.
}
// Read the next sector.
for (i = AT45DBX_SECTOR_SIZE; i; i--)
{
// Send a dummy byte to read the next data byte.
spi_write_dummy();
spi_read(AT45DBX_SPI, &data);
*_ram++ = data;
}
// Update the memory pointer.
gl_ptr_mem += AT45DBX_SECTOR_SIZE;
#if AT45DBX_PAGE_SIZE > AT45DBX_SECTOR_SIZE
// If end of page reached,
if (!Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_BYTE))
#endif
{
// unselect the DF memory gl_ptr_mem points to.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, FALSE);
// Memory busy.
at45dbx_busy = TRUE;
}
return OK;
}
Bool at45dbx_write_sector_from_ram(const void *ram)
{
const U8 *_ram = ram;
U16 i;
// Memory busy.
if (at45dbx_busy)
{
// Being here, we know that we previously launched a page programming.
// => We have to access the next page.
// Eventually select the next DF and open the next page.
// NOTE: at45dbx_write_open input parameter is a sector.
at45dbx_write_open(gl_ptr_mem >> AT45DBX_SECTOR_BITS); // gl_ptr_mem / AT45DBX_SECTOR_SIZE.
}
// Write the next sector.
for (i = AT45DBX_SECTOR_SIZE; i; i--)
{
// Write the next data byte.
spi_write(AT45DBX_SPI, *_ram++);
}
// Update the memory pointer.
gl_ptr_mem += AT45DBX_SECTOR_SIZE;
#if AT45DBX_PAGE_SIZE > AT45DBX_SECTOR_SIZE
// If end of page reached,
if (!Rd_bitfield(gl_ptr_mem, AT45DBX_MSK_PTR_BYTE))
#endif
{
// unselect the DF memory gl_ptr_mem points to in order to program the page.
at45dbx_chipselect_df(gl_ptr_mem >> AT45DBX_MEM_SIZE, FALSE);
// Memory busy.
at45dbx_busy = TRUE;
}
return OK;
}
//! @}
#endif // AT45DBX_MEM == ENABLE