weatherstation/firmware/libraries/WiFi/extras/wifiHD/src/SOFTWARE_FRAMEWORK/DRIVERS/USART/usart.c
Aaron Fischer f24858d162 Move all dependencies to the repository
This step seems bold, but is saves us so much hassle. Even better, we have a
reliable codebase, with all the dependencies (and their versions) we
need in order to build the project. If a library got an update, we can
replace it inplace if the code is still compatible.
2019-02-03 16:15:00 +01:00

915 lines
28 KiB
C

/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief USART driver for AVR32 UC3.
*
* This file contains basic functions for the AVR32 USART, with support for all
* modes, settings and clock speeds.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a USART module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "compiler.h"
#include "usart.h"
//------------------------------------------------------------------------------
/*! \name Private Functions
*/
//! @{
/*! \brief Checks if the USART is in multidrop mode.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if the USART is in multidrop mode, otherwise \c 0.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
static __inline__ int usart_mode_is_multidrop(volatile avr32_usart_t *usart)
{
return ((usart->mr >> AVR32_USART_MR_PAR_OFFSET) & AVR32_USART_MR_PAR_MULTI) == AVR32_USART_MR_PAR_MULTI;
}
/*! \brief Calculates a clock divider (\e CD) and a fractional part (\e FP) for
* the USART asynchronous modes to generate a baud rate as close as
* possible to the baud rate set point.
*
* Baud rate calculation:
* \f$ Baudrate = \frac{SelectedClock}{Over \times (CD + \frac{FP}{8})} \f$, \e Over being 16 or 8.
* The maximal oversampling is selected if it allows to generate a baud rate close to the set point.
*
* \param usart Base address of the USART instance.
* \param baudrate Baud rate set point.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Baud rate successfully initialized.
* \retval USART_INVALID_INPUT Baud rate set point is out of range for the given input clock frequency.
*/
static int usart_set_async_baudrate(volatile avr32_usart_t *usart, unsigned int baudrate, unsigned long pba_hz)
{
unsigned int over = (pba_hz >= 16 * baudrate) ? 16 : 8;
unsigned int cd_fp = ((1 << AVR32_USART_BRGR_FP_SIZE) * pba_hz + (over * baudrate) / 2) / (over * baudrate);
unsigned int cd = cd_fp >> AVR32_USART_BRGR_FP_SIZE;
unsigned int fp = cd_fp & ((1 << AVR32_USART_BRGR_FP_SIZE) - 1);
if (cd < 1 || cd > (1 << AVR32_USART_BRGR_CD_SIZE) - 1)
return USART_INVALID_INPUT;
usart->mr = (usart->mr & ~(AVR32_USART_MR_USCLKS_MASK |
AVR32_USART_MR_SYNC_MASK |
AVR32_USART_MR_OVER_MASK)) |
AVR32_USART_MR_USCLKS_MCK << AVR32_USART_MR_USCLKS_OFFSET |
((over == 16) ? AVR32_USART_MR_OVER_X16 : AVR32_USART_MR_OVER_X8) << AVR32_USART_MR_OVER_OFFSET;
usart->brgr = cd << AVR32_USART_BRGR_CD_OFFSET |
fp << AVR32_USART_BRGR_FP_OFFSET;
return USART_SUCCESS;
}
/*! \brief Calculates a clock divider (\e CD) for the USART synchronous master
* modes to generate a baud rate as close as possible to the baud rate
* set point.
*
* Baud rate calculation:
* \f$ Baudrate = \frac{SelectedClock}{CD} \f$.
*
* \param usart Base address of the USART instance.
* \param baudrate Baud rate set point.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Baud rate successfully initialized.
* \retval USART_INVALID_INPUT Baud rate set point is out of range for the given input clock frequency.
*/
static int usart_set_sync_master_baudrate(volatile avr32_usart_t *usart, unsigned int baudrate, unsigned long pba_hz)
{
unsigned int cd = (pba_hz + baudrate / 2) / baudrate;
if (cd < 1 || cd > (1 << AVR32_USART_BRGR_CD_SIZE) - 1)
return USART_INVALID_INPUT;
usart->mr = (usart->mr & ~AVR32_USART_MR_USCLKS_MASK) |
AVR32_USART_MR_USCLKS_MCK << AVR32_USART_MR_USCLKS_OFFSET |
AVR32_USART_MR_SYNC_MASK;
usart->brgr = cd << AVR32_USART_BRGR_CD_OFFSET;
return USART_SUCCESS;
}
/*! \brief Selects the SCK pin as the source of baud rate for the USART
* synchronous slave modes.
*
* \param usart Base address of the USART instance.
*
* \retval USART_SUCCESS Baud rate successfully initialized.
*/
static int usart_set_sync_slave_baudrate(volatile avr32_usart_t *usart)
{
usart->mr = (usart->mr & ~AVR32_USART_MR_USCLKS_MASK) |
AVR32_USART_MR_USCLKS_SCK << AVR32_USART_MR_USCLKS_OFFSET |
AVR32_USART_MR_SYNC_MASK;
return USART_SUCCESS;
}
/*! \brief Calculates a clock divider (\e CD) for the USART ISO7816 mode to
* generate an ISO7816 clock as close as possible to the clock set point.
*
* ISO7816 clock calculation:
* \f$ Clock = \frac{SelectedClock}{CD} \f$.
*
* \param usart Base address of the USART instance.
* \param clock ISO7816 clock set point.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS ISO7816 clock successfully initialized.
* \retval USART_INVALID_INPUT ISO7816 clock set point is out of range for the given input clock frequency.
*/
static int usart_set_iso7816_clock(volatile avr32_usart_t *usart, unsigned int clock, unsigned long pba_hz)
{
unsigned int cd = (pba_hz + clock / 2) / clock;
if (cd < 1 || cd > (1 << AVR32_USART_BRGR_CD_SIZE) - 1)
return USART_INVALID_INPUT;
usart->mr = (usart->mr & ~(AVR32_USART_MR_USCLKS_MASK |
AVR32_USART_MR_SYNC_MASK |
AVR32_USART_MR_OVER_MASK)) |
AVR32_USART_MR_USCLKS_MCK << AVR32_USART_MR_USCLKS_OFFSET |
AVR32_USART_MR_OVER_X16 << AVR32_USART_MR_OVER_OFFSET;
usart->brgr = cd << AVR32_USART_BRGR_CD_OFFSET;
return USART_SUCCESS;
}
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \brief Calculates a clock divider (\e CD) for the USART SPI master mode to
* generate a baud rate as close as possible to the baud rate set point.
*
* Baud rate calculation:
* \f$ Baudrate = \frac{SelectedClock}{CD} \f$.
*
* \param usart Base address of the USART instance.
* \param baudrate Baud rate set point.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Baud rate successfully initialized.
* \retval USART_INVALID_INPUT Baud rate set point is out of range for the given input clock frequency.
*/
static int usart_set_spi_master_baudrate(volatile avr32_usart_t *usart, unsigned int baudrate, unsigned long pba_hz)
{
unsigned int cd = (pba_hz + baudrate / 2) / baudrate;
if (cd < 4 || cd > (1 << AVR32_USART_BRGR_CD_SIZE) - 1)
return USART_INVALID_INPUT;
usart->mr = (usart->mr & ~AVR32_USART_MR_USCLKS_MASK) |
AVR32_USART_MR_USCLKS_MCK << AVR32_USART_MR_USCLKS_OFFSET;
usart->brgr = cd << AVR32_USART_BRGR_CD_OFFSET;
return USART_SUCCESS;
}
/*! \brief Selects the SCK pin as the source of baud rate for the USART SPI
* slave mode.
*
* \param usart Base address of the USART instance.
*
* \retval USART_SUCCESS Baud rate successfully initialized.
*/
static int usart_set_spi_slave_baudrate(volatile avr32_usart_t *usart)
{
usart->mr = (usart->mr & ~AVR32_USART_MR_USCLKS_MASK) |
AVR32_USART_MR_USCLKS_SCK << AVR32_USART_MR_USCLKS_OFFSET;
return USART_SUCCESS;
}
#endif // USART rev. >= 4.0.0
//! @}
//------------------------------------------------------------------------------
/*! \name Initialization Functions
*/
//! @{
void usart_reset(volatile avr32_usart_t *usart)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
// Disable all USART interrupts.
// Interrupts needed should be set explicitly on every reset.
if (global_interrupt_enabled) Disable_global_interrupt();
usart->idr = 0xFFFFFFFF;
usart->csr;
if (global_interrupt_enabled) Enable_global_interrupt();
// Reset mode and other registers that could cause unpredictable behavior after reset.
usart->mr = 0;
usart->rtor = 0;
usart->ttgr = 0;
// Shutdown TX and RX (will be re-enabled when setup has successfully completed),
// reset status bits and turn off DTR and RTS.
usart->cr = AVR32_USART_CR_RSTRX_MASK |
AVR32_USART_CR_RSTTX_MASK |
AVR32_USART_CR_RSTSTA_MASK |
AVR32_USART_CR_RSTIT_MASK |
AVR32_USART_CR_RSTNACK_MASK |
#ifndef AVR32_USART_440_H_INCLUDED
// Note: Modem Signal Management DTR-DSR-DCD-RI are not included in USART rev.440.
AVR32_USART_CR_DTRDIS_MASK |
#endif
AVR32_USART_CR_RTSDIS_MASK;
}
int usart_init_rs232(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->paritytype > 7 ||
opt->stopbits > 2 + 255 ||
opt->channelmode > 3 ||
usart_set_async_baudrate(usart, opt->baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET;
if (opt->stopbits > USART_2_STOPBITS)
{
// Set two stop bits
usart->mr |= AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET;
// and a timeguard period gives the rest.
usart->ttgr = opt->stopbits - USART_2_STOPBITS;
}
else
// Insert 1, 1.5 or 2 stop bits.
usart->mr |= opt->stopbits << AVR32_USART_MR_NBSTOP_OFFSET;
// Set normal mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET;
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_rs232_tx_only(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->paritytype > 7 ||
opt->stopbits == 1 || opt->stopbits > 2 + 255 ||
opt->channelmode > 3 ||
usart_set_sync_master_baudrate(usart, opt->baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET;
if (opt->stopbits > USART_2_STOPBITS)
{
// Set two stop bits
usart->mr |= AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET;
// and a timeguard period gives the rest.
usart->ttgr = opt->stopbits - USART_2_STOPBITS;
}
else
// Insert 1 or 2 stop bits.
usart->mr |= opt->stopbits << AVR32_USART_MR_NBSTOP_OFFSET;
// Set normal mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET;
// Setup complete; enable communication.
// Enable only output as input is not possible in synchronous mode without
// transferring clock.
usart->cr = AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_hw_handshaking(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set hardware handshaking mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_HARDWARE << AVR32_USART_MR_MODE_OFFSET;
return USART_SUCCESS;
}
int usart_init_modem(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set modem mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_MODEM << AVR32_USART_MR_MODE_OFFSET;
return USART_SUCCESS;
}
int usart_init_sync_master(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->paritytype > 7 ||
opt->stopbits == 1 || opt->stopbits > 2 + 255 ||
opt->channelmode > 3 ||
usart_set_sync_master_baudrate(usart, opt->baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET;
if (opt->stopbits > USART_2_STOPBITS)
{
// Set two stop bits
usart->mr |= AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET;
// and a timeguard period gives the rest.
usart->ttgr = opt->stopbits - USART_2_STOPBITS;
}
else
// Insert 1 or 2 stop bits.
usart->mr |= opt->stopbits << AVR32_USART_MR_NBSTOP_OFFSET;
// Set normal mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET |
AVR32_USART_MR_CLKO_MASK;
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_sync_slave(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->paritytype > 7 ||
opt->stopbits == 1 || opt->stopbits > 2 + 255 ||
opt->channelmode > 3 ||
usart_set_sync_slave_baudrate(usart) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET;
if (opt->stopbits > USART_2_STOPBITS)
{
// Set two stop bits
usart->mr |= AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET;
// and a timeguard period gives the rest.
usart->ttgr = opt->stopbits - USART_2_STOPBITS;
}
else
// Insert 1 or 2 stop bits.
usart->mr |= opt->stopbits << AVR32_USART_MR_NBSTOP_OFFSET;
// Set normal mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET;
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_rs485(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set RS485 mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_RS485 << AVR32_USART_MR_MODE_OFFSET;
return USART_SUCCESS;
}
int usart_init_IrDA(volatile avr32_usart_t *usart, const usart_options_t *opt,
long pba_hz, unsigned char irda_filter)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set IrDA filter.
usart->ifr = irda_filter;
// Set IrDA mode and activate filtering of input.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MODE_IRDA << AVR32_USART_MR_MODE_OFFSET |
AVR32_USART_MR_FILTER_MASK;
return USART_SUCCESS;
}
int usart_init_iso7816(volatile avr32_usart_t *usart, const usart_iso7816_options_t *opt, int t, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->paritytype > 1)
return USART_INVALID_INPUT;
if (t == 0)
{
// Set USART mode to ISO7816, T=0.
// The T=0 protocol always uses 2 stop bits.
usart->mr = AVR32_USART_MR_MODE_ISO7816_T0 << AVR32_USART_MR_MODE_OFFSET |
AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET |
opt->bit_order << AVR32_USART_MR_MSBF_OFFSET; // Allow MSBF in T=0.
}
else if (t == 1)
{
// Only LSB first in the T=1 protocol.
// max_iterations field is only used in T=0 mode.
if (opt->bit_order != 0 ||
opt->max_iterations != 0)
return USART_INVALID_INPUT;
// Set USART mode to ISO7816, T=1.
// The T=1 protocol always uses 1 stop bit.
usart->mr = AVR32_USART_MR_MODE_ISO7816_T1 << AVR32_USART_MR_MODE_OFFSET |
AVR32_USART_MR_NBSTOP_1 << AVR32_USART_MR_NBSTOP_OFFSET;
}
else
return USART_INVALID_INPUT;
if (usart_set_iso7816_clock(usart, opt->iso7816_hz, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set FIDI register: bit rate = selected clock/FI_DI_ratio/16.
usart->fidi = opt->fidi_ratio;
// Set ISO7816 spesific options in the MODE register.
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
AVR32_USART_MR_CLKO_MASK | // Enable clock output.
opt->inhibit_nack << AVR32_USART_MR_INACK_OFFSET |
opt->dis_suc_nack << AVR32_USART_MR_DSNACK_OFFSET |
opt->max_iterations << AVR32_USART_MR_MAX_ITERATION_OFFSET;
// Setup complete; enable the receiver by default.
usart_iso7816_enable_receiver(usart);
return USART_SUCCESS;
}
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
int usart_init_lin_master(volatile avr32_usart_t *usart, unsigned long baudrate, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (usart_set_async_baudrate(usart, baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
usart->mr |= AVR32_USART_MR_MODE_LIN_MASTER << AVR32_USART_MR_MODE_OFFSET; // LIN master mode.
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_lin_slave(volatile avr32_usart_t *usart, unsigned long baudrate, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (usart_set_async_baudrate(usart, baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
usart->mr |= AVR32_USART_MR_MODE_LIN_SLAVE << AVR32_USART_MR_MODE_OFFSET; // LIN slave mode.
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_spi_master(volatile avr32_usart_t *usart, const usart_spi_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->spimode > 3 ||
opt->channelmode > 3 ||
usart_set_spi_master_baudrate(usart, opt->baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= AVR32_USART_MR_MODE_SPI_MASTER << AVR32_USART_MR_MODE_OFFSET | // SPI master mode.
((opt->spimode & 0x1) ^ 0x1) << AVR32_USART_MR_SYNC_OFFSET | // SPI clock phase.
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET | // Channel mode.
(opt->spimode >> 1) << AVR32_USART_MR_MSBF_OFFSET | // SPI clock polarity.
AVR32_USART_MR_CLKO_MASK; // Drive SCK pin.
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_spi_slave(volatile avr32_usart_t *usart, const usart_spi_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->spimode > 3 ||
opt->channelmode > 3 ||
usart_set_spi_slave_baudrate(usart) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= AVR32_USART_MR_MODE_SPI_SLAVE << AVR32_USART_MR_MODE_OFFSET | // SPI slave mode.
((opt->spimode & 0x1) ^ 0x1) << AVR32_USART_MR_SYNC_OFFSET | // SPI clock phase.
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET | // Channel mode.
(opt->spimode >> 1) << AVR32_USART_MR_MSBF_OFFSET; // SPI clock polarity.
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
#endif // USART rev. >= 4.0.0
//! @}
//------------------------------------------------------------------------------
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \name SPI Control Functions
*/
//! @{
int usart_spi_selectChip(volatile avr32_usart_t *usart)
{
// Force the SPI chip select.
usart->cr = AVR32_USART_CR_RTSEN_MASK;
return USART_SUCCESS;
}
int usart_spi_unselectChip(volatile avr32_usart_t *usart)
{
int timeout = USART_DEFAULT_TIMEOUT;
do
{
if (!timeout--) return USART_FAILURE;
} while (!usart_tx_empty(usart));
// Release the SPI chip select.
usart->cr = AVR32_USART_CR_RTSDIS_MASK;
return USART_SUCCESS;
}
//! @}
#endif // USART rev. >= 4.0.0
//------------------------------------------------------------------------------
/*! \name Transmit/Receive Functions
*/
//! @{
int usart_send_address(volatile avr32_usart_t *usart, int address)
{
// Check if USART is in multidrop / RS485 mode.
if (!usart_mode_is_multidrop(usart)) return USART_MODE_FAULT;
// Prepare to send an address.
usart->cr = AVR32_USART_CR_SENDA_MASK;
// Write the address to TX.
usart_bw_write_char(usart, address);
return USART_SUCCESS;
}
int usart_write_char(volatile avr32_usart_t *usart, int c)
{
if (usart_tx_ready(usart))
{
usart->thr = (c << AVR32_USART_THR_TXCHR_OFFSET) & AVR32_USART_THR_TXCHR_MASK;
return USART_SUCCESS;
}
else
return USART_TX_BUSY;
}
int usart_putchar(volatile avr32_usart_t *usart, int c)
{
int timeout = USART_DEFAULT_TIMEOUT;
if (c == '\n')
{
do
{
if (!timeout--) return USART_FAILURE;
} while (usart_write_char(usart, '\r') != USART_SUCCESS);
timeout = USART_DEFAULT_TIMEOUT;
}
do
{
if (!timeout--) return USART_FAILURE;
} while (usart_write_char(usart, c) != USART_SUCCESS);
return USART_SUCCESS;
}
int usart_read_char(volatile avr32_usart_t *usart, int *c)
{
// Check for errors: frame, parity and overrun. In RS485 mode, a parity error
// would mean that an address char has been received.
if (usart->csr & (AVR32_USART_CSR_OVRE_MASK |
AVR32_USART_CSR_FRAME_MASK |
AVR32_USART_CSR_PARE_MASK))
return USART_RX_ERROR;
// No error; if we really did receive a char, read it and return SUCCESS.
if (usart_test_hit(usart))
{
*c = (usart->rhr & AVR32_USART_RHR_RXCHR_MASK) >> AVR32_USART_RHR_RXCHR_OFFSET;
return USART_SUCCESS;
}
else
return USART_RX_EMPTY;
}
int usart_getchar(volatile avr32_usart_t *usart)
{
int c, ret;
while ((ret = usart_read_char(usart, &c)) == USART_RX_EMPTY);
if (ret == USART_RX_ERROR)
return USART_FAILURE;
return c;
}
void usart_write_line(volatile avr32_usart_t *usart, const char *string)
{
while (*string != '\0')
usart_putchar(usart, *string++);
}
int usart_get_echo_line(volatile avr32_usart_t *usart)
{
int rx_char;
int retval = USART_SUCCESS;
while (1)
{
rx_char = usart_getchar(usart);
if (rx_char == USART_FAILURE)
{
usart_write_line(usart, "Error!!!\n");
retval = USART_FAILURE;
break;
}
if (rx_char == '\x03')
{
retval = USART_FAILURE;
break;
}
usart_putchar(usart, rx_char);
if (rx_char == '\r')
{
usart_putchar(usart, '\n');
break;
}
}
return retval;
}
//! @}