Compare commits

..

No commits in common. "a11a75a2c5f7fb11e86c0b8605eed4193fefb3ea" and "0626bce3b3e9ee86a0c189985c8cc8b8dd32d1f0" have entirely different histories.

3 changed files with 153 additions and 155 deletions

View file

@ -210,7 +210,6 @@ void core1_task(void *pvParameters)
{ {
if (stop_change) if (stop_change)
{ {
// TODO the enable function causes an esp32 deadlock
//i2s_adc_enable(I2S_NUM_0); //i2s_adc_enable(I2S_NUM_0);
i2s_zero_dma_buffer(I2S_NUM_0); i2s_zero_dma_buffer(I2S_NUM_0);
stop_change = false; stop_change = false;

View file

@ -69,102 +69,98 @@ void trigger_freq_analog(uint16_t *i2s_buffer,
uint32_t *pt_trigger0, uint32_t *pt_trigger0,
uint32_t *pt_trigger1) uint32_t *pt_trigger1)
{ {
float freq = 0; float freq = 0;
float period = 0; float period = 0;
bool signal_side = false; bool signal_side = false;
uint32_t trigger_count = 0; uint32_t trigger_count = 0;
uint32_t trigger_num = 10; uint32_t trigger_num = 10;
uint32_t trigger_temp[trigger_num] = {0}; uint32_t trigger_temp[trigger_num] = {0};
uint32_t trigger_index = 0; uint32_t trigger_index = 0;
// get initial signal relative to the mean // get initial signal relative to the mean
bool previous_signal_side = (to_voltage(i2s_buffer[0]) > mean); if (to_voltage(i2s_buffer[0]) > mean)
{
signal_side = true;
}
// waveform repetitions calculation + get triggers time // waveform repetitions calculation + get triggers time
uint32_t wave_center = (max_v + min_v) / 2; uint32_t wave_center = (max_v + min_v) / 2;
for (uint32_t i = 1; i < BUFF_SIZE; i++) for (uint32_t i = 1; i < BUFF_SIZE; i++)
{
if (signal_side && i2s_buffer[i] < wave_center - (wave_center - min_v) * 0.2)
{ {
bool current_signal_side = (to_voltage(i2s_buffer[i]) > mean); signal_side = false;
}
else if (!signal_side && i2s_buffer[i] > wave_center + (max_v - wave_center) * 0.2)
{
freq++;
if (trigger_count < trigger_num)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
signal_side = true;
}
}
if (previous_signal_side && !current_signal_side) // frequency calculation
{ if (trigger_count < 2)
freq++; {
if (trigger_count < trigger_num) trigger_temp[0] = 0;
{ trigger_index = 0;
trigger_temp[trigger_count] = i; freq = 0;
trigger_count++; period = 0;
} }
} else if (!previous_signal_side && current_signal_side) else
{ {
freq++;
if (trigger_count < trigger_num)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
}
previous_signal_side = current_signal_side; // simple frequency calculation fair enough for frequencies over 2khz (20hz resolution)
freq = freq * 1000 / 50;
period = (float)(sample_rate * 1000.0) / freq; // us
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
} }
// frequency calculation // under 80hz, single period for frequency calculation
if (trigger_count < 2) else if (trigger_count > 1 && freq <= 80)
{ {
trigger_temp[0] = 0; period = trigger_temp[1] - trigger_temp[0];
trigger_index = 0; freq = sample_rate * 1000 / period;
freq = 0;
period = 0;
} }
else }
{
// simple frequency calculation fair enough for frequencies over 2khz (20hz resolution) // setting triggers offset and getting second trigger for debug cursor on drawn_channel1
freq = freq * 1000 / 50; /*
period = (float)(sample_rate * 1000.0) / freq; // us
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
}
// under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80)
{
period = trigger_temp[1] - trigger_temp[0];
freq = sample_rate * 1000 / period;
}
}
// setting triggers offset and getting second trigger for debug cursor on drawn_channel1
/*
The trigger function uses a rise porcentage (5%) obove the mean, thus, The trigger function uses a rise porcentage (5%) obove the mean, thus,
the real waveform starting point is some datapoints back. the real waveform starting point is some datapoints back.
The resulting trigger gets a negative offset of 5% of the calculated period The resulting trigger gets a negative offset of 5% of the calculated period
*/ */
uint32_t trigger2 = 0; uint32_t trigger2 = 0;
if (trigger_temp[0] - period * 0.05 > 0 && trigger_count > 1) if (trigger_temp[0] - period * 0.05 > 0 && trigger_count > 1)
{ {
trigger_index = trigger_temp[0] - period * 0.05; trigger_index = trigger_temp[0] - period * 0.05;
trigger2 = trigger_temp[1] - period * 0.05; trigger2 = trigger_temp[1] - period * 0.05;
} }
else if (trigger_count > 2) else if (trigger_count > 2)
{ {
trigger_index = trigger_temp[1] - period * 0.05; trigger_index = trigger_temp[1] - period * 0.05;
if (trigger_count > 2) if (trigger_count > 2)
trigger2 = trigger_temp[2] - period * 0.05; trigger2 = trigger_temp[2] - period * 0.05;
} }
pt_trigger0[0] = trigger_index; pt_trigger0[0] = trigger_index;
pt_trigger1[0] = trigger2; pt_trigger1[0] = trigger2;
pt_freq[0] = freq; pt_freq[0] = freq;
pt_period[0] = period; pt_period[0] = period;
} }
void trigger_freq_digital(uint16_t *i2s_buffer, void trigger_freq_digital(uint16_t *i2s_buffer,
@ -176,84 +172,89 @@ void trigger_freq_digital(uint16_t *i2s_buffer,
float *pt_period, float *pt_period,
uint32_t *pt_trigger0) uint32_t *pt_trigger0)
{ {
float freq = 0;
float period = 0;
bool signal_side = false;
uint32_t trigger_count = 0;
uint32_t trigger_num = 10;
uint32_t trigger_temp[trigger_num] = {0};
uint32_t trigger_index = 0;
// get initial signal relative to the mean float freq = 0;
bool previous_signal_side = (to_voltage(i2s_buffer[0]) > mean); float period = 0;
bool signal_side = false;
uint32_t trigger_count = 0;
uint32_t trigger_num = 10;
uint32_t trigger_temp[trigger_num] = {0};
uint32_t trigger_index = 0;
// waveform repetitions calculation + get triggers time // get initial signal relative to the mean
uint32_t wave_center = (max_v + min_v) / 2; if (to_voltage(i2s_buffer[0]) > mean)
bool normal_high = (mean > to_voltage(wave_center)) ? true : false; {
if (max_v - min_v > 4095 * (0.4 / 3.3)) signal_side = true;
}
// waveform repetitions calculation + get triggers time
uint32_t wave_center = (max_v + min_v) / 2;
bool normal_high = (mean > to_voltage(wave_center)) ? true : false;
if (max_v - min_v > 4095 * (0.4 / 3.3))
{
for (uint32_t i = 1; i < BUFF_SIZE; i++)
{ {
for (uint32_t i = 1; i < BUFF_SIZE; i++) if (signal_side && i2s_buffer[i] < wave_center - (wave_center - min_v) * 0.2)
{
// signal was high, fell -> trigger if normal high
if (trigger_count < trigger_num && normal_high)
{ {
bool current_signal_side = (to_voltage(i2s_buffer[i]) > mean); trigger_temp[trigger_count] = i;
trigger_count++;
if (previous_signal_side && !current_signal_side)
{
// signal was high, fell -> trigger if normal high
if (trigger_count < trigger_num && normal_high)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
}
else if (!previous_signal_side && current_signal_side)
{
// signal was low, rose -> trigger if normal low
if (trigger_count < trigger_num && !normal_high)
{
trigger_temp[trigger_count] = i;
trigger_count++;
}
}
previous_signal_side = current_signal_side;
} }
// frequency calculation signal_side = false;
if (trigger_count > 1) }
else if (!signal_side && i2s_buffer[i] > wave_center + (max_v - wave_center) * 0.2)
{
freq++;
// signal was low, rose -> trigger if normal low
if (trigger_count < trigger_num && !normal_high)
{ {
// simple frequency calculation fair enough for frequencies over 2khz (20hz resolution) trigger_temp[trigger_count] = i;
freq = freq * 1000 / 50; trigger_count++;
period = (float)(sample_rate * 1000.0) / freq; // us
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
}
// under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80)
{
period = trigger_temp[1] - trigger_temp[0];
freq = sample_rate * 1000 / period;
}
} }
trigger_index = trigger_temp[0]; signal_side = true;
}
if (trigger_index > 10)
trigger_index -= 10;
else
trigger_index = 0;
} }
pt_trigger0[0] = trigger_index; freq = freq * 1000 / 50;
pt_freq[0] = freq; period = (float)(sample_rate * 1000.0) / freq; // us
pt_period[0] = period;
if (trigger_count > 1)
{
// from 2000 to 80 hz -> uses mean of the periods for precision
if (freq < 2000 && freq > 80)
{
period = 0;
for (uint32_t i = 1; i < trigger_count; i++)
{
period += trigger_temp[i] - trigger_temp[i - 1];
}
period /= (trigger_count - 1);
freq = sample_rate * 1000 / period;
}
// under 80hz, single period for frequency calculation
else if (trigger_count > 1 && freq <= 80)
{
period = trigger_temp[1] - trigger_temp[0];
freq = sample_rate * 1000 / period;
}
}
trigger_index = trigger_temp[0];
if (trigger_index > 10)
trigger_index -= 10;
else
trigger_index = 0;
}
pt_trigger0[0] = trigger_index;
pt_freq[0] = freq;
pt_period[0] = period;
} }

View file

@ -32,11 +32,9 @@ void ADC_Sampling(uint16_t *i2s_buff){
} }
*/ */
void ADC_Sampling(uint16_t *i2s_buff){ void ADC_Sampling(uint16_t *i2s_buff){
size_t bytes_read; size_t bytes_read; for (int i = 0; i < B_MULT; i++) {
for (int i = 0; i < B_MULT; i++) {
i2s_read(I2S_NUM_0, (void*)&i2s_buff[i * NUM_SAMPLES], NUM_SAMPLES * sizeof(uint16_t), &bytes_read, portMAX_DELAY); i2s_read(I2S_NUM_0, (void*)&i2s_buff[i * NUM_SAMPLES], NUM_SAMPLES * sizeof(uint16_t), &bytes_read, portMAX_DELAY);
for(size_t ix = 0; ix < bytes_read/2; ix++) for(size_t ix = 0; ix < bytes_read/2; ix++) i2s_buff[(i * NUM_SAMPLES) + ix] &= 0x0FFF; // 16bit to 12bit conversion 
i2s_buff[(i * NUM_SAMPLES) + ix] &= 0x0FFF; // 16bit to 12bit conversion 
} }
} }