weatherstation/firmware/firmware.ino

462 lines
12 KiB
Arduino
Raw Normal View History

// Standard ESP8266 libs from project folder
#include <ESP8266mDNS.h>
#include <ESP8266HTTPUpdateServer.h>
2017-11-07 22:20:14 +01:00
#include <ESP8266WiFi.h>
2017-11-12 22:34:08 +01:00
#include <DNSServer.h>
#include <ESP8266WebServer.h>
#include <ESP8266HTTPClient.h>
2017-11-12 22:34:08 +01:00
#include <WiFiClient.h> // WiFiClient
#include <WiFiManager.h> // WiFiManager from bib manager
// Project includes
#include "constants.h"
2017-11-07 22:20:14 +01:00
#include "config.h"
#include "config_user.h"
//*************************************************************************//
// check if some settings are correct
#ifdef HTTP_CALL_ON_WINDSPEED_EXCEED
#if (HTTP_CALL_ON_WINDSPEED_INTERVAL_S < WIND_SENSOR_MEAS_TIME_S)
#error "HTTP_CALL_ON_WINDSPEED_INTERVAL_S < WIND_SENSOR_MEAS_TIME_S"
#endif
#endif
//*************************************************************************//
// constant variables
const uint8_t VALUES = 8; // see constants.h file - count of number of SENSOR_ defines
float currentSensorData[VALUES] = { nanf("no value"), nanf("no value"), nanf("no value"),
nanf("no value"), nanf("no value"), nanf("no value"),
nanf("no value"), nanf("no value") };
float (*sensors[VALUES])() = {};
2017-11-07 22:20:14 +01:00
uint32_t update_sensor_cnt = 0;
uint32_t update_webserver_cnt = 0;
uint32_t update_windspeed_exceed_cnt = 0;
uint32_t wifi_check_interval_counter = 0;
const String wifiName = "oko-weather-" + DEVICE_NAME;
2017-11-12 22:34:08 +01:00
WiFiManager wifiManager;
2019-03-31 17:01:04 +02:00
uint8_t fsm_state = FSM_STATE_WU;
uint8_t sensor_cnt = 0;
boolean validData = false;
//*************************************************************************//
void debug(String x)
{
#ifdef DEBUG
Serial.println(x);
#endif
2022-09-12 19:31:16 +02:00
#ifdef USE_LOGGER
logdata(String(millis()) + ":" + x);
#endif
}
//*************************************************************************//
void setup()
{
2019-02-06 21:26:13 +01:00
#if defined(DEBUG) || defined(SERIAL_FEATURE)
Serial.begin(115200);
#endif
2017-11-12 22:34:08 +01:00
// Pin settings
2022-05-17 10:13:17 +02:00
pinMode(BAT_CHARGED_PIN, INPUT);
pinMode(BAT_CHARGING_PIN, INPUT);
pinMode(STATUS_LED_PIN, OUTPUT);
pinMode(ANEMOMETER_PIN, INPUT_PULLUP);
pinMode(A0, INPUT);
2017-11-12 22:34:08 +01:00
2018-12-02 17:06:06 +01:00
digitalWrite(STATUS_LED_PIN, LOW);
2020-02-20 19:49:44 +01:00
#ifndef BAT_PINS_D34
debug("D5 D6 used as battery pins");
#else
debug("D3 D4 used as battery pins");
#endif
2019-01-27 18:49:28 +01:00
#ifdef BATTERY_POWERED
2019-01-06 15:21:03 +01:00
criticalBatCheck();
2019-01-27 18:49:28 +01:00
#endif
wifiConnect();
debug("Connected!");
#ifdef INFLUXDB_FEATURE
influxdb_begin();
#endif
2017-11-20 20:42:02 +01:00
initSensors();
#ifdef WEBUPDATER_FEATURE
#ifndef BATTERY_POWERED
setupWebUpdater(DEVICE_NAME, WiFi.localIP().toString());
#endif
#endif
//It's magic! leave in
delay(100);
#ifdef BATTERY_POWERED
debug("battery powered");
_loop();
digitalWrite(STATUS_LED_PIN, LOW);
criticalBatCheck();
WiFi.mode(WIFI_OFF);
WiFi.forceSleepBegin();
debug("deep sleep");
// the ESP.deepSleep requires microseconds as input, after the
// sleep the system will run into the setup routine
ESP.deepSleep(POWERSAVING_SLEEP_S * 1000000, WAKE_RF_DEFAULT);
delay(100);
#endif
#ifdef ENABLE_WATCHDOG
// Enable the internal watchdog
ESP.wdtEnable(WATCHDOG_TIMEOUT_MS);
#endif
}
//*************************************************************************//
void initSensors()
{
2017-11-20 20:42:02 +01:00
// Initialize and configure the sensors
#ifdef SENSOR_APDS9930
if (sensor_apds9930_begin()) {
sensors[SENSOR_LIGHT] = &apds9930_light;
2019-03-31 17:01:04 +02:00
}
#endif
#ifdef SENSOR_APDS9960
if (sensor_apds9960_begin()) {
2020-02-18 20:06:03 +01:00
sensors[SENSOR_LIGHT] = &apds9960_light;
}
#endif
#ifdef SENSOR_BME280
2019-01-27 18:49:28 +01:00
//Temperature + pressure
if (sensor_bme280_begin(BME_ADDRESS)) {
sensors[SENSOR_TEMPERATURE] = &bme280_temperature;
sensors[SENSOR_HUMIDITY] = &bme280_humidity;
sensors[SENSOR_PRESSURE] = &bme280_pressure;
}
#endif
#ifdef SENSOR_WIND
sensors[SENSOR_WINDSPEED] = &wind_speed;
#endif
#ifdef SENSOR_BATTERY
sensors[SENSOR_BAT_VOLTAGE] = &battery_voltage;
sensors[SENSOR_BATCHARGESTATE] = &battery_charging;
sensors[SENSOR_ESAVEMODE] = &isEnergySavingMode;
#endif
}
2017-11-20 20:42:02 +01:00
//*************************************************************************//
void wifiConnectionCheck()
{
2022-09-12 23:07:05 +02:00
if ((wifi_check_interval_counter + WIFI_CHECK_INTERVAL_MS) > millis())
{
// if check interval is not exceeded abort check
return;
}
wifi_check_interval_counter = millis();
2022-06-22 13:52:55 +02:00
2022-09-12 23:07:05 +02:00
if (WiFi.status() == WL_CONNECTED)
{
// if we are connected
return;
}
debug("no connection or time to check " + String(WiFi.status() == WL_CONNECTED));
wifiConnect();
2022-06-22 13:52:55 +02:00
2017-10-20 00:13:40 +02:00
}
void wifiConnect()
{
// Establish WiFi connection if not already applied
wifiManager.setMinimumSignalQuality(WIFI_MINIMUM_SIGNAL_QUALITY);
// the time in seconds to wait for the known wifi connection
wifiManager.setConnectTimeout(WIFI_AUTOCONNECT_TIMEOUT_S);
// the time in seconds to wait for the user to configure the device
wifiManager.setTimeout(WIFI_CONFIG_PORTAL_TIMEOUT_S);
while (!wifiManager.autoConnect(wifiName.c_str(), "DEADBEEF"))
{
// If autoconnect to WLAN failed and no client connected, go to deep sleep
#ifdef SLEEP_IF_NO_WLAN_CONNECTION
ESP.deepSleep(POWERSAVING_SLEEP_S * 1000000, WAKE_RF_DEFAULT);
delay(100);
#endif
#ifndef SLEEP_IF_NO_WLAN_CONNECTION
// sleep a few seconds and go on trying to connect
debug("WiFi connection failed, try again in 5 seconds...");
delay(5000);
#endif
}
}
//*************************************************************************//
2019-01-27 18:49:28 +01:00
#ifdef BATTERY_POWERED
void criticalBatCheck()
{
float volt = battery_voltage();
2019-01-06 15:21:03 +01:00
if (volt <= BAT_EMERGENCY_DEEPSLEEP_VOLTAGE) {
debug("Bat Voltage: " + String(volt) + " V");
debug("Low battery, going into deep sleep.");
2019-02-03 19:10:38 +01:00
// Casting to an unsigned int, so it fits into the integer range
ESP.deepSleep(1U * EMERGENCY_SLEEP_S * 1000000); // battery low, shutting down
delay(100);
}
}
2019-01-27 18:49:28 +01:00
#endif
//*************************************************************************//
void loop()
{
2022-06-22 13:52:55 +02:00
#ifdef ENABLE_WATCHDOG
ESP.wdtFeed();
#endif
wifiConnectionCheck();
2019-01-27 18:49:28 +01:00
#ifdef BATTERY_POWERED
delay(50);
return;
#endif
// call sub loop function
_loop();
// Needed to give WIFI time to function properly
delay(DELAY_LOOP_MS);
}
//*************************************************************************//
void _loop()
{
switch (fsm_state)
{
case FSM_STATE_WU:
//debug("web updater call if required");
#ifdef WEBUPDATER_FEATURE
if ((update_webserver_cnt + (UPDATE_WEBSERVER_INTVERVAL_S * 1000)) <= millis())
{
//debug("web updater call");
update_webserver_cnt = millis();
doWebUpdater();
}
#endif
fsm_state = FSM_STATE_WSE;
break;
case FSM_STATE_WSE:
debug("wind speed exceeded check if required");
#ifdef HTTP_CALL_ON_WINDSPEED_EXCEED
if ((update_windspeed_exceed_cnt + (HTTP_CALL_ON_WINDSPEED_INTERVAL_S * 1000)) <= millis())
{
debug("reading wind sensor exceed");
update_windspeed_exceed_cnt = millis();
readWindSpeedExceed();
}
#endif
fsm_state = FSM_STATE_RS;
break;
case FSM_STATE_RS:
//debug("reset time check if required");
2022-05-25 20:14:22 +02:00
#ifdef RESET_ESP_TIME_INTERVAL
// if millis() reached interval restart ESP
if (RESET_ESP_TIME_INTERVAL_MS <= millis())
{
debug("resetting firmware intentionally");
// Push reset button after flashing once or do a manual power cycle to get the functionality working.
ESP.restart();
}
#endif
fsm_state = FSM_STATE_WS;
break;
case FSM_STATE_WS:
//debug("disable measure of wind speed if required");
#ifdef defined(BATTERY_POWERED) && defined(SENSOR_WIND)
if (energySavingMode() == 1) {
// Disable expensive tasks
sensors[SENSOR_WINDSPEED] = 0;
//debug("read of wind sensor because of low battery disabled");
} else {
sensors[SENSOR_WINDSPEED] = &wind_speed;
//debug("read of wind sensor because of high battery enabled");
}
2019-03-31 16:17:57 +02:00
#endif
2022-09-12 19:31:16 +02:00
sensor_cnt = 0;
fsm_state = FSM_STATE_US;
break;
case FSM_STATE_US:
//debug("read sensor data check");
if ((update_sensor_cnt + (UPDATE_SENSOR_INTERVAL_S * 1000)) <= millis())
{
2022-09-12 19:31:16 +02:00
debug("read sensor data " + String(sensor_cnt));
if (sensors[sensor_cnt]) {
currentSensorData[sensor_cnt] = sensors[sensor_cnt]();
} else {
currentSensorData[sensor_cnt] = nan("no value");
}
if (sensor_cnt < VALUES)
{
sensor_cnt++;
2022-09-12 19:31:16 +02:00
fsm_state = FSM_STATE_US; // jump to same state again, more sensors to read
} else {
update_sensor_cnt = millis();
sensor_cnt = 0;
2022-09-12 19:31:16 +02:00
fsm_state = FSM_STATE_SC; // next state
}
} else {
debug("skip read sensor data");
fsm_state = FSM_STATE_WU; // no new data, reset FSM
}
break;
case FSM_STATE_SC:
debug("log to serial if required");
#ifdef SERIAL_FEATURE
logToSerial(currentSensorData);
#endif
fsm_state = FSM_STATE_ID;
break;
2017-10-20 00:13:40 +02:00
case FSM_STATE_ID:
2022-09-12 19:31:16 +02:00
debug("send data to influxdb if required");
#ifdef INFLUXDB_FEATURE
for (uint8_t i = 0; i < 5 and validData == false; i++)
{
if (currentSensorData[i] != 0)
{
validData = true;
}
}
if (validData == true)
{
// send data only if valid data is available
pushToInfluxDB(DEVICE_NAME, currentSensorData);
}
#endif
fsm_state = FSM_STATE_SD;
break;
2019-01-27 18:49:28 +01:00
case FSM_STATE_SD:
2022-09-12 19:31:16 +02:00
debug("set sensor data in webupdater if required");
2018-12-02 17:06:06 +01:00
#ifdef WEBUPDATER_FEATURE
setSensorData(currentSensorData);
#endif
fsm_state = FSM_STATE_WU;
break;
default:
fsm_state = FSM_STATE_WU;
break;
} // close of switch
//delay(100); // TODO warum hier ein delay?
2022-09-12 19:31:16 +02:00
//debug("FSM state = " + String(fsm_state));
/*if (fsm_state == FSM_STATE_WU)
2022-09-12 19:31:16 +02:00
{
debug("----------");
}*/
}
//*************************************************************************//
void readWindSpeedExceed()
{
if (sensors[SENSOR_WINDSPEED])
{
// read from windspeed sensorSTATUS_LED_PIN
digitalWrite(STATUS_LED_PIN, HIGH);
currentSensorData[SENSOR_WINDSPEED] = sensors[SENSOR_WINDSPEED]();
digitalWrite(STATUS_LED_PIN, LOW);
if (currentSensorData[SENSOR_WINDSPEED] >= HTTP_CALL_ON_WINDSPEED_EXCEED_MPS)
{
digitalWrite(STATUS_LED_PIN, HIGH);
// call the url HTTP_CALL_ON_WINDSPEED_URL
WiFiClient client;
HTTPClient http;
http.begin(client, String(HTTP_CALL_ON_WINDSPEED_URL).c_str());
// Send HTTP GET request
int httpResponseCode = http.GET();
if (httpResponseCode > 0) {
String response = http.getString();
debug("http response code: " + String(httpResponseCode) + " = " + response);
// TODO handle response
}
http.end();
debug("Called windspeed exceed callout");
digitalWrite(STATUS_LED_PIN, LOW);
}
} else {
currentSensorData[SENSOR_WINDSPEED] = nan("no value");
2022-09-12 19:31:16 +02:00
}
}
//*************************************************************************//
void logToSerial(float sensorValues[])
{
Serial.println("");
Serial.println("Current readings:");
Serial.println("Temperature: " + String(sensorValues[SENSOR_TEMPERATURE]) + " °C");
Serial.println("Humidity: " + String(sensorValues[SENSOR_HUMIDITY]) + " %");
Serial.println("Light: " + String(sensorValues[SENSOR_LIGHT]) + " Lux");
Serial.println("Windspeed: " + String(sensorValues[SENSOR_WINDSPEED]) + " km/h");
Serial.println("Pressure: " + String(sensorValues[SENSOR_PRESSURE]) + " hPa");
Serial.println("Bat Voltage: " + String(sensorValues[SENSOR_BAT_VOLTAGE]) + " V");
Serial.println("Bat charge state: " + String(sensorValues[SENSOR_BATCHARGESTATE]));
Serial.println("Energy saving: " + String(sensorValues[SENSOR_ESAVEMODE]));
}
//*************************************************************************//